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Abstract. We determine the distribution function for the area
of a random triangle in a regular pentagon. It turns out that the
golden ratio is intimately related to the pentagon calculations.

1. Introduction

We shall denote the regular pentagon by K and the random triangle
by T and shall consider the random variable X = area(T )/area(K).
It is well known that an affine transformation will preserve the ratio X.
This follows from the fact that the area scaling is constant for an affine
transformation. The scale equals the determinant of the homogeneous
part of the transformation.

Various aspects of our problem have been considered in the field
of geometric probability, see e.g. [14]. J. J. Sylvester considered the
problem of a random triangle T in an arbitrary convex set K and
posed the following problem: Determine the shape of K for which the
expected value κ = E(X) is maximal and minimal. A first attempt to
solve the problem was published by M. W. Crofton in 1885. Wilhelm
Blaschke [3] proved in 1917 that 35

48π2 ≤ κ ≤ 1
12

, where the minimum is
attained only when K is an ellipse and the maximum only when K is
a triangle. The upper and lower bounds of κ only differ by about 13%.

It has been shown [2], that κ = 1
20

+
√

5
90
≈ .074845. for K a regular

pentagon.
A. Reńyi and R. Sulanke, [12] and [13], consider the area ratio when

the triangle T is replaced by the convex hull of n random points. They
obtain asymptotic estimates of κ for large n and for various convex K.
R. E. Miles [7] generalizes these asymptotic estimates for K a circle to
higher dimensions. C. Buchta and M. Reitzner, [4], have given values of
κ (generalized to three dimensions) for n ≥ 4 points in a tetrahedron.
H. A. Alikoski [2] has given expressions for κ when T is a triangle and
K a regular r-polygon.

Here, we shall deduce the distribution function for X when K is a
regular pentagon. We have done this before when K is a square in, [8]
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Figure 1. The regular pentagon K, the random trian-
gle T and the shrunken pentagon B .

and [9], when K is a triangle in [10], and when K is regular hexagon
in [11]. The method used here is the same as in [9] and [11].

2. Notation and formulation.

We use a constant probability density for generating three random
points in the regular pentagon K. Let T be the convex hull of the
three points. Compare Figure 1. We shall determine the probability
distribution of the random variable X = area(T )/area(K).

Our method will be to shrink the pentagon around its midpoint until
one of its sides hits a triangle point. The shrunken pentagon is denoted
B. The random variable X that we study will be written as the product
of two random variables

V = area(B)/area(K) and W = area(T )/area(B).

One of the triangle points stops the shrinking and determines V . Since
the density of the points is rotation invariant, we can use a local co-
ordinate system at the stopping point with one axis along the side
of the pentagon and one orthogonal to the side. It’s the point’s or-
thogonal coordinate that determines the shrink. The coordinate along
this side is independent of the former and is consequently evenly dis-
tributed along the side. Since the coordinates of the other two triangle
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points are independent of the hitting point, it follows that V and W
are independent.

We shall determine the distributions of V and W and combine them
to get the distribution of X = V W .

3. The distribution of V .

V is the area of the shrunken pentagon B. The pentagon K is the
sum of five similar triangles. Each of the three points of the random
triangle sits in one of these similar triangles. Focussing on such a
similar triangle, we measure the distance from the random point to
the center of the pentagon othogonally to the side of the triangle that
is part of the pentagon. Denote this distance by S. The distribution
function for S is L(s) = c · s2 , where c is a constant. Choosing a scale
so that s = 1 on the boundary, we have c = 1. The largest of the three
distances has the distribution function L(smax)

3 = (smax)
6. The area

of B is v = area(K) · (smax)
2. We get

(1) G(v) = Prob(V < v) = (smax)
6 = v3, 0 ≤ v ≤ 1.

By the argument used here, this G(v) holds for any regular r-polygon.

4. The distribution of W.

W is the area of a random triangle having one vertex on the boundary
of a regular pentagon = B and the other two vertices in the interior of
the pentagon. In the calculations, we will use the affine transforms of
B shown in Figures 2 and 4. The affine transform in Figure 2 is chosen
so that three adjacent vertices of the pentagon sit in the points (1,0),
(0,0), and (0,1). Then, the remaining two vertices will sit in the points
(1,a) and (a,1), where

(2) a =
1 +

√
5

2
≈ 1.618

is the golden ratio.
The same number will occur naturally also in the affine transforma-

tion in Figure 4. The calculations below will lead to high powers of a
in the expressions. A substantial part of the calculations in this paper
consists of simplifying expressions with powers of a using the equation
that it satisfies:

(3) a2 = a + 1 .

When we did the calculations for a hexagon in [11], the constant im-
posed by the geometry was 2, so that its powers were handled by ordi-
nary arithmetic.

Returning to the geometry, we will, without loss of generality, num-
ber the three triangle vertices so that vertex one is the one sitting on
the boundary and we let this boundary be the x-axis, so that vertex
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Figure 2. Case 1. The line l0 through vertices one and
two intersects the left side of the affine pentagon B1.

one is (x, 0), where 0 ≤ x ≤ 1. In Figure 2, the position of the second
vertex is (x2, y2). Let l0 be the line through vertices one and two. It
contains one side of the triangle having length = s, see the Figure.
We get four geometrical cases depending on which side of B that l0
intersects besides the x-axis. More precisely, we shall number the sides
clockwise around the pentagon letting the side with x1 have number 0.
The case number will be the same as that of the intersected side.

4.1. Case 1. Case 1, depicted in Figure 2, occurs when l0 itersects side
one of the affine pentagon i.e. the y-axis in the point (0, y), 0 ≤ y ≤ 1.
This means that l0 itersects two adjacent sides of B. The equation for
l0 is

l0 : η = −y

x
ξ + y.

Let s =
√

(x− x2)
2 + y2

2 be the distance between vertices one and

two. For fixed x and y, the maximal value of s is r1 =
√

x2 + y2.
The area of the affine pentagon B1 in Figure 2 is area(B1) = 1 + a

2
.

The variable W = area(T )/area(B1) = area(T )/(1 + a/2) will be less
than w if the distance between l0 and the third vertex is less than
2(1 + a/2) w/s. To avoid the factor 2(1 + a/2) = a + 2 in numerous
places below, we shall use the “normalized” double area u = (a + 2)w
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in the calculations. The lines l1 and l2 have the distance u/s to l0.

l1 : η = −y

x
ξ + y − u r1

s x
.

l2 : η = −y

x
ξ + y +

u r1

s x
.

This means that the conditional probability P (W ≤ u/(a+2) |x, y, s)
is proportional to the area between the lines l1 and l2 in the pentagon
in Figure 2. We shall use the formula 1 + a/2 − T1 − S1 (see Figure
2) for this area and we shall average T1 over x, y, and s to get the
contribution to P (W ≤ u/(a + 2)) from Case 1. The averaging of the
area S1 to the right of l2 will be done in Case 4.

Putting 2 T1 = α and and using the equation of l1, we get

(4) α =
x

y

(
y − u r1

s x

)2

if s >
u r1

x y
, otherwise 0 .

We shall determine the densities of x, y, and s. As we noted, x is
evenly distributed over (0, 1). The area to the left of l0 is xy/2, so for
fixed x, the density is the differential x

2
dy. For fixed x and y consider

the small triangle with vertices in (x, 0), (0, y), and (0, y + dy). The
fraction of the small triangle below s is ( s

r1
)2 and the density is the

differential 2s
r1

2 ds. We shall substitute s by t = s/r1 so that 0 ≤ t ≤ 1.

We get dt = ds/r1 and the combined (x, y, t)-density ρ1 = xt. A
calculation gives that the integral of ρ1 over the whole range of (x, y, t)
equals 1

4
. Divided by the area of the pentagon, it gives the probability

1
2(a+2)

≈ .1382 for the occurence of Case 1.

Figure 3 shows the domain in (y, t)-space to integrate over for fixed
u and x. The decreasing curve is its lower bound tα = u

x y
below which

α = 0. The intersection of the lower and upper t-bounds is the lower
bound yα = u/x for y. We have yα < 1 when x > u.

The contribution from Case 1 is the weighted average of α:

(5) h11(u) =

∫ 1

u

xdx

∫ 1

u/x

dy

∫ 1

u/x y

x

y

(
y − u

t x

)2

t dt.

Maple is helpful in solving integrals of this kind and delivers the
following result valid for 0 ≤ u ≤ 1

(6) h11(u) = −1

3
u3 +

5

4
u2 − u +

1

12
− 1

2
u2 log(u) (1− log(u)).

4.2. Case 2. This case occurs when l0 itersects sides zero and two of
the pentagon, meaning that the intersected sides of B are separated by
one side. We shall use the affine transformation B2 shown in Figure
4 in the calculations. We have scaled B2 so that a ≤ x ≤ a + 1 and
a ≤ y ≤ a + 1. Alternatively, we could have chosen to have x and y in
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Figure 3. Area to integrate t and y over in Case 1 when
x/u = 3.

the interval (1, a). Neither of these natural choices gives B2 the same
area as B1, so we have to do a change of scale later to merge the results
from the different cases. The x- and y- axes are the same as in Case 1,
so ρ2 = ρ1. Also the expression for l0 is the same as in Case 1,

Let the intersections between l1 and the coordinate axes be ξ1 and η1

respectively and let the intersection between l1 and the line ξ + η = a
have ξ-coordinate ξ2. Compare Figure 4. The figure is drawn with
x < y and 0 < ξ2 < a. The contribution to P (W ≤ u/(a + 2)) from
Case 2 is twice the area in the pentagon to the left of l1. We call this
quantity α and in the figure it is

α = (η1 − a) · ξ2 =
x

y − x

(
y − a− u

xt

)2

.

Figure 5 shows the situation in Case 2 with a smaller u/t. Here, ξ2 > a
and the area to the left of l1 is instead α + β, where

β = (ξ1 − a) · (a− ξ2) =
y

x− y

(
x− a− u

yt

)2

.

Here, α extends outside the pentagon and β equals minus the part of
α outside the pentagon. We have α ≥ 0 whenever η1 ≥ a, which is
equivalent to t ≥ tα = u

x·(y−a)
. Otherwise, α = 0. We have β ≤ 0
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Figure 4. Case 2 when u/t = 1, x = 1.9, and y = 2.5 .

whenever ξ1 ≥ a, which is equivalent to t ≥ tβ = u
y·(x−a)

. Otherwise

β = 0.
The areas to integrate t and y over are shown in Figure 6. Figures

4 and 5 are drawn for y > x, so we should consider only the part of
Figure 6 where y > x. In fact, Figure 6 is valid also for y < x. The
only difference is that β ≥ 0 and α ≤ 0 for y < x. Incidentally, tα
and tβ intersect at y = x. Thus, we shall integrate α from tα to 1 and
β from tβ to 1. Noting that β equals α with x and y switched, one
could hope that their integration would give the same result. However,
ρ2 is not symmetric in x and y. The reason is that the y-density is
calculated for fixed x as is the t-density calculated for fixed x and y.
The integrations shall be performed first in t, then in y and last in x.
As long as a < yα < a + 1 and a < yβ < a + 1, we shall calculate

kα(u, x) =

∫ a+1

yα

dy

∫ 1

tα

ρ2 α dt and kβ(u, x) =

∫ a+1

yβ

dy

∫ 1

tβ

ρ2 β dt .

Here, the intersection between tα and 1 is yα = a + u/x, and that
between tβ and 1 is yβ = u/(x − a). Whenever yα and yβ are smaller
than a, they shall be replaced by a and the integrals are zero when they
are bigger than a + 1. In Figure 7, we show the lines in (x, u)-space
where yα and yβ are between a and a + 1 and indicate where kα and
kβ hold. In the area marked kβ,0 we have yβ < a so that the kβ(u, x)
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Figure 5. Case 2 when u/t = .2, x = 1.9, and y = 2.5 .

Figure 6. The areas to integrate t and y over in
Case 2 when u = .85 and x = 2.1.
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Figure 7. The x-intervals to integrate kα, kβ, and kβ,0

over for different u in Case 2.

given above is not valid and shall be replaced by

kβ,0(u, x) =

∫ a+1

a

dy

∫ 1

tβ

ρ2 β ds ,

where we have added the index 0 to indicate that the lower bound for
y is at its bottom value.

We have

h21(u) =

∫ a+1

a

kα dx +

∫ a+u/a

a+u/a2

kβ dx +

∫ a+1

a+u/a

kβ,0 dx, 0 ≤ u ≤ a,

(7)

h22(u) =

∫ a+1

u

kα dx +

∫ a+1

a+u/a2

kβ dx. a ≤ u ≤ a + 1.

To give an idea of what the evaluation of these integrals look like we
give h22(u). This is the simplest of the hij and has got the form below
after a considerable simplification of the result produced by Maple.
We will supply any interested reader with Maple-files giving explicit
expressions for other results. The function Li2 is the dilogarithm, see
the Appendix.
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h22(u) =

(8)

=
a u2

2

[
Li2

(
a
√

5 −√a2 + 4u

2a2

)
− Li2

(
a−√a2 + 4u

2a2

)

−Li2

(√
a2 + 4u− a

2

)
− Li2

(
−
√

a2 + 4u + a

2

)
+ Li2

( u

a2

)]

− a u2

2
(log (2a2)− log (a +

√
a2 + 4u)) log (a2 − u) +

u2

2
log (u)2

+

(
2au2 log (

a +
√

a2 + 4u

2
)− 2(3a− 1)au2 log (a) +

u2

2a
− a3u

3
− a5

60

)
log (u)

− 2au2 log (a +
√

a2 + 4u)
2
+

au2

2
log (2a2) log (a

√
5 +

√
a2 + 4u)

− au2

2

(
log (a

√
5 +

√
a2 + 4u) + log (

a2

512
)

)
log (a +

√
a2 + 4u)

+
1

60
(log (4u)− 2 log (a +

√
a2 + 4u))(a4 + 18a2u− 64u2)

√
a2 + 4u

− 1

15
a2(2a5 − 7a4 + 20u + 15au2) log (a)− 5

2
au2 log (2)2 − 1

12
au2π2

− 1

60

(
20

u3

a2
+ a2(38a− 113)u2 − 2a4(11a− 41)u + a6(4a− 9)

)

+ a2u2(11− a) log (a)2, a ≤ u ≤ a + 1.

4.3. Case 3. This case occurs when l0 intersects sides zero and three.
Like in Case 2, this implies that there is one side between the intersected
sides and we shall use the same transformation of the pentagon as in
Case 2. See Figures 4 and 5. Cases 2 and 3 are complementary. In
Case 2, we studied the area to the left of l1. Here we shall study the
area S1, see Figure 2, to the right of l2. In Figure 8, we have drawn
l2 for u/t = 1 . The relevant intersection points are P1 = (ξ1, 0) and
P2 = (0, η1), where l2 intersects the x, and y-axes, respectively. Futher,
P3 = (ξ3, η3) , and P4 = (ξ4, η4) where l2 intersects the sides of the
pentagon through (a, a).

The expression for l2 is

η = −y

x
ξ + y +

u

xt
,

and the density ρ3 = ρ2. The double area to the right of l2 in the
pentagon will be written as the difference between three triangles as
α + β + γ. The triangle with vertices at (a, a), P3, and P4 has the
double area α. The triangle with vertices at P1, (a+1, 0), and P3 shall
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Figure 8. Case 3 when x = 1.7, y = 1.8, and u/t = 1.

be subtracted from α and has the signed double area −β. The triangle
with vertices in P2, (0, a + 1), and P4 has the signed double area −γ.
The expressions

α =
a

(ax− y)(ay − x)
(a(x + y)− xy − u/t)2,

β = − a

y(ax− y)
(a2y − xy − u/t)2, and

γ = − a

x(ay − x)
(a2x− xy − u/t)2,

are valid where α > 0 and β < 0, and γ < 0.
We have α > 0 when ξ3 > a (and ξ4 < a) which occurs when

t > tα =
u

ax + ay − xy
.

We have β < 0 when η3 < 0 which occurs when

t > tβ =
u

y(a2 − x)
.

We have γ < 0 when ξ4 < 0 which occurs when

t > tγ =
u

x(a2 − y)
.
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Figure 9. The intervals to integrate x over for fixed u
in Case 3.

The lower t-bounds intersect the upper bound t = 1 at yα = ax−u
x−a

,

yβ = u
a2−x

, and yγ = a2x−u
x

,. These intersections are not always between
a and a + 1 so we shall calculate

kα(u, x) =

∫ yα

a

dy

∫ 1

tα

ρ3 α dt and kα,0(u, x) =

∫ a+1

a

dy

∫ 1

tα

ρ3 α dt ,

kβ(u, x) =

∫ a+1

yβ

dy

∫ 1

tβ

ρ3 β dt , and kβ,0(u, x) =

∫ a+1

a

dy

∫ 1

tβ

ρ3 β dt ,

kγ(u, x) =

∫ yγ

a

dy

∫ 1

tγ

ρ3 γ dt .

Notice that the y-integration of β goes from yβ to a + 1 and that
yγ < a + 1 for all x so that there is no kγ,0.

These functions shall be integrated over the x-intervals shown in
Figure 9 leading to the expressions in equation (9). We have written
a2 instead of a + 1 in these expressions.
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h31(u) =

∫ a2

a

kα,0 dx +

∫ a2−u/a

a

kβ,0 dx +

∫ a2−u/a2

a2−u/a

kβ dx

(9)

+

∫ a2

a

kγ dx 0 ≤ u ≤ a,

h32(u) =

∫ a3−u

a

kα,0 dx +

∫ a2

a3−u

kα dx

+

∫ a2−u/a2

a

kβ dx +

∫ a2

u

kγ dx, a ≤ u ≤ a + 1.

The explicit expressions are not given here.

4.4. Case 4. This case occurs when l0 intersects sides zero and four,
meaning that it intersects adjacent sides like in Case 1 implying that
Case 4 is complementary to Case 1. We shall calculate the area S1 to
the right of l2 in Figure 2. Figure 10 describes the involved variables.

The expression for l2 is the same as in Case 3 and the density is
ρ4 = ρ1 = xt. The signed double triangle areas in Figure 10 are

α =
a2

(x + ay)(x− y)
(ax + y − xy − u/t)2,

β =
a2

(ax + y)(y − x)
(ay + x− xy − u/t)2,

γ = − a

(x + ay)x
(xy − x + u/t)2,

δ = − a

(ax + y)y
(xy − y + u/t)2.

The function to integrate over t, y, and x is α + β + γ + δ.
Figure 10 is drawn with x > y which makes α > 0 and β < 0. With

x < y, we have instead α < 0 and β > 0. γ and δ are always negative.
As before, the above expressions hold respectively when

t ≥ tα =
u

ax + y − xy
, t ≥ tβ =

u

ay + x− xy

t ≥ tγ =
u

x(1− y)
, t ≥ tδ =

u

y(1− x)
,

and are zero otherwise. The intersections between the lower t-bounds
and 1 are yα = u−ax

1−x
, yβ = u−x

a−x
, yγ = x−u

x
, yδ = u

1−x
.

These intersections are not always between zero and one so we shall
calculate

kα(u, x) =

∫ 1

yα

dy

∫ 1

tα

ρ4 α dt and kα,0(u, x) =

∫ 1

0

dy

∫ 1

tα

ρ4 α dt ,
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Figure 10. The pentagon in Case 4.

kβ(u, x) =

∫ 1

yβ

dy

∫ 1

tβ

ρ4 β dt and kβ,0(u, x) =

∫ 1

0

dy

∫ 1

tβ

ρ4 β dt ,

kγ(u, x) =

∫ yγ

0

dy

∫ 1

tγ

ρ4 γ dt and kδ(u, x) =

∫ 1

yδ

dy

∫ 1

tδ

ρ4 δ dt .

These functions shall be integrated over the x-intervals shown in
Figure 11.

h41(u) =

∫ u/a

0

kα dx +

∫ 1

u/a

kα,0 dx +

∫ u

0

kβ dx(10)

+

∫ 1

u

kβ,0 dx +

∫ 1

u

kγ dx +

∫ 1−u

0

kδ dx, 0 ≤ u ≤ 1,

h42(u) =

∫ u/a

a(u−1)

kα dx +

∫ 1

u/a

kα,0 , dx +

∫ 1

0

kβ dx, 1 ≤ u ≤ a.

The explicit expressions are not given here.

4.5. Combination of cases. Integrating the ρi over the whole t-, y-
and x-range in each case gives 1

4
, a3

4
, a3

4
, 1

4
, respectively. Dividing these

numbers by the area of the pentagon in each case gives the probability
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Figure 11. The intervals to integrate x over for fixed u
in Case 4.

for the case. The area of the pentagon in Figure 2 is T14 = a+2
2

and in

Figure 4 it is T23 = 3a+1
2

. The probabilities are p1 = p4 =
√

5
10 a

≈ .1382

and p2 = p3 = a
√

5
10

≈ .3618.
The calculated hnm must be scaled before they are combined. The

variable u ranges from 0 to a in cases 1 and 4 and from 0 to a2 in cases 2
and 3. The first scaling is to replace u by a u in the hnm for cases 2 and
3. Then, the hnm are divided twice by the area of the pentagon that
they are integrated over, once to get the probabilities add to one and
once because we are stydying the ratio between the area of the triangle
and the pentagon. We get the probability distribution function H(u)
for twice the area of a random triangle in a pentagon, when one of the
triangle vertices sits on the boundary of the pentagon:

H1(u) = 1− 1

T14
2 (h11(u) + h41(u))− 1

T23
2 (h21(au) + h31(au)), 0 ≤ u < 1,

(11)

H2(u) = 1− 1

T14
2h42(u)− 1

T23
2 (h22(au) + h32(au)), 1 ≤ u < a.
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5. Combination of the V- and W-distributions.

Let F (x) be the distribution function for the triangle area X in
a regular pentagon with unit area. We have X ≤ x when V W =
UV/(a + 2) ≤ x. Putting x = y/(a + 2) = y/a

√
5 , this happens when

UV ≤ y and we get

F (y/a
√

5 ) =

∫ a

0

G(y/u) dH(u) =

= [G(y/u)H(u)]a0 −
∫ a

y

H(u)
d

du
G(y/u) du =

= G(y/a)−
∫ a

y

H(u)
d

du
G(y/u) du =

=
y3

a3
− 3 y3

∫ a

y

u−4 H(u) du, 0 ≤ y ≤ a.

(12)

The partial intergration in (12) is used to avoid integrating to the
lower bound u = 0. Substituting y = (a + 2)x = a

√
5 x in the result

will give us the wanted F (x) given in (14) and (15), with x ranging
from 0 to a

a+2
= 1√

5
.

To write the result, we need the function

(13) Li2(x) = −
∫ x

0

log(1− t)

t
dt.

This is the dilogarithm function discussed by Euler in 1768 and
named by Hill, [5]. Some properties of Li2(x) are given in Appendix A.

We will not carry out the integration (12) in detail. To avoid the
factor a + 2 in numerous places, we will write the result as a function
of y = (a + 2)x = a

√
5 x as it stands in (12). We have used both the

constant a and the constant
√

5 = 2a − 1 to keep the expressions as
short as possible. We display the result in Figure 12 in the form of the
density f(x) = dF

dx
of the distribution. The range of x is 0 ≤ x < 1√

5
.

We save the comments on our way to the result and on the result to
the next sections.
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F1(
y

a
√

5
) =

(14)

24
√

5 y2

5a3

(
a− 2

3
y

) [
Li2

(
1 +

√
1 + 4y/a

2a

)
+ Li2

(
1−

√
1 + 4y/a

2a

)

+ log (
√

1 + 4y/a + 1) log (
√

1 + 4y/a− 1)− log (2) log (2y/a)
]

+
24
√

5 y2

5a3

(
a4 +

2

3
y

) [
Li2

(
a2 −

√
a4 − 4y

2a

)
− Li2

(
1/a−

√
a4 − 4y

2a

)

− log

(√
a4 − 4y − 1/a

2a

)
log

(
a2 +

√
a4 − 4y

2a

)]

− 24
√

5 y2

5a2
Li2

(y

a

)
+

4
√

5 y3

5a3
(log (y))2

+

√
5

75a3

[
(a3 + 28a2y − 324ay2)

√
(1 + 4y/a)− a3 − 30a2y + 270ay2

]
log (y)

−
√

5

75a3

[
(a8 − 28a4y − 324y2)a2

√
a4 − 4y

+(a2 + 28ay − 324y2)a
√

1 + 4y/a− 2(41a + 26− 30a5y − 270a2y2)
]
log (a− y)

+
2
√

5

75a
(a8 − 28a4y − 324y2)

√
a4 − 4y log

(
1 + a

√
a4 − 4y

2a

)

+
2
√

5

75a2
(a2 + 28ay − 324y2)

√
1 + 4y/a log

(
1 +

√
1 + 4y/a− 1

2y

)

− 12
√

5 y2

5a3
(a
√

5 +
4

3
y) (log (a))2 − 4

√
5 a

75
(a3 +

11

2
a2 − 45ay − 135y2) log (a)

− 4
√

5 π2y2

75a3
(33a + 24 + 2y) +

2
√

5

25a
(2a + 31)y − 19

5

y2

a2
,

0 ≤ y < 1.
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F2(
y

a
√

5
) =

(15)

1− 24
√

5 y2

5a3

(
a4 +

2

3
y

) [
Li2

(
a2 −

√
a4 − 4y

2a

)
− Li2

(
1/a−

√
a4 − 4y

2a

)

+ log

(
a2 +

√
a4 − 4y

2a

)(
log

(
a2 −

√
a4 − 4y

)
− log

(√
a4 − 4y − 1/a

))]

+
8
√

5 y2

5a3
(3a2 + y) Li2

(y

a

)

+
24
√

5

5a3

(
1

4
+

73

180
a− 1

3
a5y − 3

2
a3y2 + a4y2 log (a)

)
log (y)

+

√
5

75a2

(
a(a8 − 28a4y − 324y2)

√
a4 − 4y

−25− 37a + (60 + 150a)y + 270y2
)

log (a− y)

+
24
√

5 y2

5a3

(
a− 2

3
y

)(
log (2) log (

2y

a
)

− log (
√

1 + 4y/a + 1) log (
√

1 + 4y/a− 1)
)

−
√

5

75a2
(a2 + 28ay − 324y2)

√
1 + 4y/a

(
log (

4y

a
)− 2 log (1 +

√
1 + 4y/a)

)

−
√

5

75a
(a8 − 28a4y − 324y2)

√
a4 − 4y

(
log (y)− 2 log (

a2 +
√

a4 − 4y

1/a +
√

a4 − 4y
)

)

+

√
5 a

25
(270y2 − 17a− 13) log (a) + 2a5 log (a)y − 24a(log (a))2 y2

+
4
√

5 π2 y2

75a3
(3a2(3a− 2) + y)− a

√
5

25
(5 + a + 4(1− 6a)y + 19y2),

1 ≤ y < a.

It may look as if the terms of F1 and F2 haven’t been collected in
an optimal way. The reason is that we have written the expressions so
that each term is finite in every point of its domain.

The density function f(x) = dF
dx

is plotted in Figure 12. Its domain
is 0 ≤ x < 1√

5
.

The first, second, and third moments of the distribution are obtained
by integration

α1 =

∫ 1√
5

0

x f(x)dx =
4a + 7

180
=

1

20
+

√
5

90
≈ .074845,
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Figure 12. The density function f(x) = dF (x)
dx

for the
area fraction of a random triangle in a regular pentagon.
x ranges from 0 to 1/

√
5.

α2 =

∫ 1√
5

0

x2 f(x)dx =
4a + 23

3000
=

1

120
+

√
5

1500
≈ .009824.

α3 =

∫ 1√
5

0

x3 f(x)dx =
114a + 199

225000
=

32

28125
+

19
√

5

75000
≈ .001704.

6. The calculation of the hmn.

The calculations leading to the hmn leads to solving singular inte-
grals. On several occasions we had to use limiting procedures when
inserting the boundaries. We will not digress on this here but refer the
reader to section 6 in [11], which discusses the used methods.

Usually, Maple answers with its dilog function dilog(x) = Li2(1−x).
During the simplifications of this paper, we had to deduce relations
between the dilog functions. Here are some examples which hold when

a =
√

5+1
2

and 0 < y < a.
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dilog

(
a2 −

√
a4 − 4y

2a

)
+ dilog

(
a2 +

√
a4 − 4y

2a

)
− dilog

(y

a

)

+dilog

(
a2 −

√
a4 − 4y

2

)
+ dilog

(
a2 +

√
a4 − 4y

2

)
+

1

2
(log a)2 = 0

(16)

dilog

(
2a− 1−

√
1 + 4y/a

2a

)
+ dilog

(
2a− 1 +

√
1 + 4y/a

2a

)

+dilog
(a

2
(2a− 1−

√
1 + 4y/a)

)
+ dilog

(a

2
(2a− 1 +

√
1 + 4y/a)

)

+dilog
(y

a

)
+ log (y/a) log (a− y)− log (y) log a + 3(log a)2 =

1

6
π2

(17)

log (a2 −√3a− 2) + 2 log (a
√

3a− 2 + 1) = log (a) + 3 log (2).(18)

2 dilog

(
a2 −√3a− 2

2

)
+ 2 dilog

(
a2 +

√
3a− 2

2

)

+4(log (a
√

3a− 2 + 1))2 − 4 log (4a) log (a
√

3a− 2 + 1) = −(log (4a))2

(19)

Some dilogs involving a have explicit expressions like

dilog(a) =
(log a)2

2
− π2

15
, dilog(a2) = (log a)2 − π2

10
,

dilog

(
1

a

)
=

π2

15
− (log a)2 ,

dilog(−a) =
4π2

15
− (log a)2 − 2iπ log a .

(20)

7. The golden ratio.

The appearance of the golden ratio a = 1+
√

5
2

in the pentagon calcu-

lations stems from the fact that cos 2π
5

= 1
2a

. We shall describe where
it enters into the calculation. This occurs when we do the affine trans-
formation of the regular pentagon to the pentagons in Figure 2 and
Figure 4. The transformation to Figure 2 is chosen so that three ad-
jacent vertices sit in (1, 0), (0, 0) and (0, 1). The ”fourth” vertex, i.e.
the one at the top in Figure 2, then sits in (1, a). We do the same
kind of transformation also for the square and the hexagon calculation.
When done for a regular n-gon, the fourth vertex gets the position
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(
1, sin (3π/n)

sin (π/n)

)
. For n = 4, 5, 6, 8, and 10 this gives the y-coordinates of

point four: 1, a, 2 , 1 +
√

2, and 1 + a, respectively. This means that
a enters for n = 5 and 10.

Iterating the equation a2 = a + 1 , we get a3 = 2a + 1, a4 = 3a + 2,
a5 = 5a + 3, etc., which are linear expressions for the powers of a.
The coefficients are the Fibonacci numbers. The iteration can also be
run backwards giving a−1 = a − 1, a−2 = 2 − a, a−3 = 2a − 3, etc..
A great part of the calculations of this paper consists of simplifying
expressions using these linear expressions. We have constructed two
maple procedures, one for replacing powers of a with linear expressions
and one for going the other way looking for linear expressions that
can be replaced by powers of a. They have been indispensable in the
calculations.

8. Comparison with triangle, square, and hexagon
results.

We have given the distribution functions for the area of a triangle in
a triangle, in a square, and in a regular hexagon in references [8], [10],
[11], respectively. Even though the expressions for the densities f3, f4,
f5, and f6, in the four cases are widely different, their graphs are almost
identical. All four take the value 12 at the origin and their derivatives
at the origin are −16π2. Their second derivatives are infinite at the
origin. Their domains of definition are (0, 1) for the triangle, (0, 1

2
)

for the square and the hexagon, and (0, 1√
5
) for the pentagon. We

have plotted all four in Figure 13. Only f3 for the triangle can be
distinguished from the other three. To give an idea of the difference
between the curves, we give their values at x = .1: f3(.1) ≈ 3.652,
f4(.1) ≈ 3.848, f5(.1) ≈ 3.908, and f6(.1) ≈ 3.926.

9. Concluding comment.

We have not shown any integral calculations in detail. In principle,
they are elementary, which doesn’t mean that they don’t require a sub-
stantial effort. The calculations would not have been possible without
some tool like Maple or Mathematica for handling the large number of
terms that come out of the integrations. This doesn’t mean that Maple
performs the integrations automatically. Often, we had to split up the
integrands into parts and treat each part in a special way. We had to
do some partial integrations manually. A substantial part of the work
has been spent on simplifying the integrals that Maple produces.

It should be pointed out that Maple isn’t reproducible in the sense
that it doesn’t always give exactly the same answer. The terms often
come in a different order when you rerun a calculation. This implies
that partial results must be saved.
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Figure 13. The density functions for the area of a tri-
angle in a triangle, square, pentagon, and hexagon. It
is the triangle density that is descernable from the other
three, which are very close.

We will supply any interested reader with Maple files describing the
calculations.

Appendix A

The dilogarithm function Li2(x) is defined in [6] and [16] for complex
x as

Li2(x) = −
∫ x

0

log(1− t)

t
dt.(21)

When x is real and greater than unity, the logarithm is complex. A
branch cut from 1 to ∞ can give it a definite value.

We have the series expansion

Li2(x) =
∞∑

k=1

xk

k2
, |x| ≤ 1.(22)

This implies that Li2(x) is analytic in the unit circle. Although the
series (22) is only convergent for |x| ≤ 1, the integral in (21) is not
restricted to these limits and Re(Li2(x)) is defined and is real on the
whole real axis. We use this function for |x| < 1.
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2

2

x

864

−1

0

0

1

−2

Figure 14. The function Re(Li2(x)).

The definition of the dilogarithm function has varied a little from
author to author. Maple has the function polylog(2, x) which is de-
fined by the series expansion (22) for |x| ≤ 1 otherwise by analytic
continuation. Maple also has a function dilog(x) = Li2(1 − x) defined
on the whole real axis. Maple’s dilog function is the same as the dilog
function given in [1], page 1004.

Re(Li2(x)) is increasing from Re(Li2(0)) = 0 via Re(Li2(1)) =π2/6
to its maximum Re(Li2(2)) = π2/4.
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