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Abstract. We determine exact expressions for the probability
distribution and the average of the distance between two random
points in a 4-cube and the average distance between two random
points in a 5-cube. The obtained expressions contain unsolvable
integrals. The two averages are known before. We use a new
method resulting in new expressions.

1. Introduction

We consider the random variable V = the distance between two
random points in a unit cube in dimensions four and five. V is one
of the many random quantities studied in Geometric Probability, see
eg. Santalo, [6]. The probability distributions for the distance between
two random points in a square and in an ordinary 3-cube are given
in Philip, [5]. That paper also gives the distribution of the distance
between two random points in a rectangle and in a box with unequal
side lengths.

The similar problem for the distance between two random points on
the surface of a cube has been considered by Borwain et.al. [2] and
Philip, [4]. See also Bailey et.al. [3].

A survey of the results in this area are collected by Weisstein on
the web site [8]. Exact expressions for the average distance in four
and five dimensions are given in Bailey et.al. [3], but they suffer from
misprints. Correct versions of these expressions are given in [8]. An-
other expression for the four-dimensional average is given in A103983
of Sloane,[7].

The calculations of this paper rely on the results of [5]. The distri-
bution for the 4-cube will be obtained by convolving the distribution
for a square by itself. Convolving the distribution for the square with
that of an ordinary 3-cube would give the distribution for a 5-cube. We
will not calculate the distribution in 5-D but only the average. This
is done by reversing the order of the convolution integration and the
averaging integration.

1991 Mathematics Subject Classification. Primary: 60D05: Secondary: 52A22.
Key words and phrases. Distribution of distance in a 4- and 5-cube.

1



2 JOHAN PHILIP

The numerical value of the average in n dimensions can be found by
numerical evaluation of the integral

(1) E(n) =

∫ 1

0

...

∫ 1

0

√

√

√

√

n
∑

k=1

(xk − yk)2 dx1.....dyn

The values E(4) ≈ .7776656535 and E(5) ≈ .8785309152 can be found
in [8] or as A103983 and A103984 in [7]. We have checked these values
to five digits accuracy by Monte Carlo tests.

Our results are long expressions and we rely heavily on the use of a
formula manipulating program, in our case Maple 10.

2. Notation and formulation.

The four or five coordinates of the two random points are assumed
to be evenly distributed on the unit interval and are assumed to be
independent.

The calculations will be done for the square U of the distance V
between the two random points. When the distribution function H(u)
for U is found, the wanted distribution K(v) for the distance V is
obtained as K(v) = H(v2). The corresponding densities satisfy k(v) =
2 v h(v2).

3. The four-dimensional distribution.

We shall calculate the four-dimensional density h(u) as the convo-
lution of the density g(u) by itself, where g(u) is the density for the
square of the distance in a (2-dimensional) square.

(2) h(u) =

∫

g(u− s) g(s) ds,

The density g(s) taken from [5] is as follows:

(3)

g(s) =

{

g1(s) = π − 4
√

s + s, 0 < s ≤ 1 ;

g2(s) = −2 + 4
√

s − 1 − s − 2 arcsin (1 − 2/s), 1 < s ≤ 2.

Since g is supported by (0, 2), h will be supported by (0, 4). The
analytical expressions for h will be different in the four unit intervals
that form its support. We get

(4) h1(u) =

∫ u

0

g1(u − s) g1(s) ds, 0 < u ≤ 1 ,
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Figure 1. Density function k(v) for the distance be-
tween two random points in a four-dimensional cube.

h2(u) =

∫ u−1

0

g2(u − s) g1(s) ds +

∫ 1

u−1

g1(u − s) g1(s) ds

+

∫ u

1

g1(u − s) g2(s) ds =

∫ 1

u−1

g1(u − s) g1(s) ds

+ 2

∫ u

1

g1(u − s) g2(s) ds, 1 < u ≤ 2 ,

(5)

h3(u) =

∫ 1

u−2

g2(u − s) g1(s) ds +

∫ u−1

1

g2(u − s) g2(s) ds

+

∫ 2

u−1

g1(u − s) g2(s) ds =

∫ u−1

1

g2(u − s) g2(s) ds

+ 2

∫ 2

u−1

g1(u − s) g2(s) ds, 2 < u ≤ 3 ,

(6)

h4(u) =

∫ 2

u−2

g2(u − s) g2(s) ds, 3 < u ≤ 4.(7)

The practical integrations in (4) to (7) are made with Maple 10. The
Maple worksheet h4D.mw is available at www.math.kth.se/~johanph.
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We give the result here as function of u, which is the square of
distance between two random points in a four-dimensional cube.

h(u) =










































































































































1
6
u3 − 32

15
u5/2 + 3πu2 − 16

3
πu3/2 + π2u,

0 < u ≤ 1,

−1
2
u3 − (2 + 3π)u2 + 32

3
u3/2 + (2

3
− 12π + π2)u

+ 4
15

(24u2 + (27 + 20π)u − 6 + 10π)
√

u − 1

+2π − 2
15

− (12u2 + 8πu) arcsec(
√

u),

1 < u ≤ 2,
1
2
u3 + (4 − 3π)u2 + 32

3
πu3/2 + (14

3
− π2)u

−10π − 26
15

− 32
3
(u − 1)3/2 − 1

5
(32u2 + 72u + 8)

√
u − 2

−32u3/2 arcsec(u − 1) + 8(3u2 + 6u + 10) arcsec(
√

u − 1)

+16
∫ u−1

1
arcsec(

√
s) arcsec(

√
u − s) ds,

2 < u ≤ 3,

−1
6
u3 + (−2 + 3π)u2 + (−16

3
+ 12π − π2)u − 32

15
− 12π

+
(

−32
3
π + 32 arcsec(u − 2)

)

(u − 1)3/2

+ 1
15

(32u2 + 108u + 48 − 120π)
√

u − 3

+ (−12u2 + (−48 + 8π) u + 80 − 16π) arcsec(
√

u − 2)

+16
∫ 2

u−2
arcsec(

√
s) arcsec(

√
u − s) ds,

3 < u ≤ 4.

(8)

We see no way of solving the integral in this expression. The density
k(v) for the distance v =

√
u is k(v) = 2 v h(v2) and is shown in

Figure 1.

4. The average distance between two random points in a

4-cube.

The exact value of the average is given by

(9) E(4) =

∫ √
uh(u) du =

∫ √
u

∫

g(u − s) g(s) ds du.

One can evaluate the first integral in (9), but we choose to use the
second double integral and start by calculating

(10)

m(s) =

∫ √
u g(u − s) du =

∫ 1

0

√
s + t g1(t) dt +

∫ 2

1

√
s + t g2(t) dt.

We get
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m(s) =
4

15
s5/2 − 1

15
(8s2 − 9s − 2)

√
1 + s +

1

15
(4s2 − 9s + 1)

√
2 + s

− 4

3
s3/2 arcsin (

1

1 + s
) − 1

2
s2 log (s) + (s2 − 2s − 1

3
) log (1 + s)

+ s2 log (1 +
√

1 + s) − (s2 − 2s − 1

3
) log (1 +

√
2 + s).

(11)

The function m(s) is well defined and increasing on the interval 0 ≤
s < ∞ starting from m(0) = E(2) = 1

3
log (1 +

√
2) + 1

15
(2 +

√
2) ≈

.521405 .
Having m(s), we get

(12) E(4) =

∫ 1

0

m(s) g1(s) ds +

∫ 2

1

m(s) g2(s) ds.

The calculation of E(4) is described in the Maple worksheet E4D.mw,
which are available at www.math.kth.se/~johanph. The result is

E(4) =
1

5

[

−23

27
− 16π

63
+

(

73

126
− 34π

21
+ (

68

21
+

π

6
) arccos (

1

3
)

)√
2

+
8

21

√
3 − 52

21
log (2) +

(

197

84
+

π

6

)

log (3)

+

(

5

14
− 2π

3

)

log (1 +
√

2) +
104

21
log (1 +

√
3)

−2

3

∫

√

2

1

arcsec(1 + t2) arcsec(t) dt

]

.

(13)

We see no way of solving the integral of this expression. A numerical
evaluation of E(4) gives the value .77766... given in the introduction.

The second moment of the distance is easily calculated in any number
of dimensions. The density function for the square of the distance in
the unit interval is

(14) f(u) = 1/
√

u − 1, 0 < u < 1.

The average of U is α2,1 = 1/6. The squared distance in n dimensions
is the sum of n such squared distances and we have α2,n = n/6.

5. The average distance between two random points in a

5-cube.

We have not tried to derive the five-dimensional density function but
have used the same method as in the former section to calculate the
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average E(5). The density h5(u) of the 5-cube is the convolution of the
two-dimensional density g(u) in (14) and the three-dimensional density
h3(u) derived in [5]. We get

E(5) =

∫ √
uh5(u) du =

∫ √
u

∫

g(u− s) h3(s) ds du

=

∫ 3

0

m(s) h3(s) ds,

(15)

where m(s) is given in (11).
Our calculation of the exact value of E(5) is described in the Maple

worksheets E5D0.mw, E5D1.mw, and E5D2.mw , which are available at
www.math.kth.se/~johanph. The result is

E(5) =
1

7

[

−449

495
− 4π

27
+

4π2

45
+

(

3239

8910
− 73

9
arcsin(

1

3
)

)√
2

+

(

568

495
− 8

3
arcsin(

1

4
)

)√
3 − 380

891

√
5

−
(

124

27
+

223π

90

)

log (2) +

(

295

36
+

π

4

)

log (3)

+

(

7

54
− π

2

)

log (1 +
√

2) +

(

40

9
− 47π

15

)

log (1 +
√

3)

+

(

64

27
+

52π

15

)

log (1 +
√

5) +
52π

45
log (

√
3 +

√
5)

+

∫ 2

1

(

1

(1 + u)
√

2 + u
+

104

15(2 + u)
√

3 + u

)

arcsec(
√

u) du

+
1

4

(
∫

−2

−3

k1(u) du −
∫ 2

1

k1(u) du

)

+
26

15

(
∫

−3

−4

k2(u) du −
∫ 2

1

k2(u) du

) ]

,

(16)

where

k1(u) =
arcsec(u)√
1 + u

√
2 + u

and k2(u) =
arcsec(u)√
1 + u

√
3 + u

.

6. Comparison of results.

The expression for E(4) given by Bailey, Borwein and Crandall [3]
has, after correction of misprints, the following form
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EBBC(4) =
136

105

√
2 arctan (

1

2

√
2) − 34

105
π
√

2 +
8

105

√
3 +

73

630

√
2

− 4

5
Cl2(α) +

4

5
Cl2(α − 1

2
π) +

197

420
log (3) +

1

14
log (1 +

√
2)

+
4

5
α log (1 +

√
2) − 1

5
π log (1 +

√
2) +

52

105
log (2 +

√
3)

− 23

135
− 16

315
π +

26

15
G ,

(17)

where G is Catalan’s number, α = arcsin (2
3
−

√

2
6

) and Cl2(z) is the
Clausen function from [1] :

(18) Cl2(z) = −
∫ z

0

log (|2 sin (t/2)|) dt.

Noting that α = π
4
− arcsin (1

3
), one can write

(19) Cl2(α) − Cl2(α − 1

2
π) = −

∫ arcsin ( 1

3
)+ π

4

arcsin ( 1

3
)−π

4

log (|2 sin (t/2)|) dt.

Equating the expressions for E(4) given in (13) and (17), we get the
following relation between the insolvable integrals of the two expres-
sions. For reasons that will become apparent, we name this expression
A. Notice that EBBC(4) contains 4

5
A.

A =

∫ arcsin ( 1

3
)+ π

4

arcsin ( 1

3
)−π

4

log (|2 sin (t/2)|) dt +
13

6
G + (α − π

4
) log (1 +

√
2)

=
π

24

(

log (3) − 4 log (1 +
√

2) +
√

2 arccos (
1

3
)

)

− 1

6

∫

√

2

1

arcsec(1 + t2) arcsec(t) dt.

(20)

The integrand of the first integral in (20) has a singularity at t = 0
while the second integrand is bounded and continuous . We see no way
of deducing this relation directly.

The expression for E(5) given by Bailey, Borwein and Crandall [3]
has, after correction of misprints, the following form
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EBBC(5) =
65

42
G − 449

3465
− 4

189
π +

4

315
π2 +

3239

62370

√
2 +

568

3465

√
3

− 380

6237

√
5 − 73

63

√
2 arctan (

√
2

4
) − 8

21

√
3 arctan (

1√
15

)

+

(

52

63
π − 184

189

)

log (2) +
295

252
log (3) +

64

189
log (1 +

√
5)

+

(

1

54
− 5π

28
+

5

7
α

)

log (1 +
√

2) +
4

63
(10 − 13π) log (

√
2 +

√
6)

− 5

7
Cl2(α) +

5

7
Cl2(α − π/2) +

52

63
K3,

(21)

where G, α and Cl2(z) are the same as above and

K3 =

∫ 4

3

arcsec(x)√
x2 − 4x + 3

dx .

Notice that EBBC(5) contains 5
7
A. This implies that we can use (20) to

replace G, α and Cl2 in EBBC(5) by the arcsec-integral of E(4). This
results in our favourite expression for E(5):

EF (5) =
1

21

[

−449

165
− 4π

9
+

4π2

15
+

(

568

165
− 8 arcsin(

1

4
)

)√
3

+

(

3239

2970
+

5

16
π2 −

(

73

3
+

5π

8

)

arcsin(
1

3
)

)√
2 − 380

297

√
5

+

(

−124

9
+

26π

3

)

log (2) +

(

295

12
+

5π

8

)

log (3)

+

(

7

18
− 5π

2

)

log (1 +
√

2) +

(

40

3
− 52π

3

)

log (1 +
√

3)

+
64

9
log (1 +

√
5)

+
52

3

∫ 4

3

arcsec(t)√
t2 − 4t + 3

dt − 5

2

∫

√

2

1

arcsec(1 + t2)arcsec(t) dt

]

.

(22)

7. Comment.

Even if Maple is very helpful in doing the calculations of this paper,
there are several things it doesn’t do. The success of the calculations
relies on manual simplification of trigonometric expressions, on manual
factorization of polynomials and on choosing suitable parts in partial
integrations.
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