THE AREA OF A RANDOM CONVEX POLYGON.
JOHAN PHILIP

ABSTRACT. We consider the area of the convex hull of n points
with random positions in a square. We give the distribution func-
tion of the area for three and four random points. We also present
some results on the number of vertices of the convex hull. Results
from Monte Carlo tests with large n are presented and compared
with asymptotic estimates.

1. INTRODUCTION

Random objects are used when testing motion algorithms in com-
puter vision. The typical object is the convex hull of a set of points
in a square image. The performance of such an algorithm depends
on several parameters and one of them is the size of the object. This
raised our interest in the area of the polygon spanned by n randomly
generated points in a square.

We shall denote the square by K and the convex hull of the n points
by T and shall consider the random variable X = area(T")/area(K).
It is well known that an affine transformation will preserve the ratio X.
This follows from the fact that the area scaling is constant for an affine
transformation. The scale equals the determinant of the homogeneous
part of the transformation. This means that our results hold when K
is a parallelogram.

Various aspects of our problem have been considered in the field
of geometric probability, see e.g. [10]. J. J. Sylvester considered the
problem of a random triangle 7" in an arbitrary convex set K and
posed the following problem: Determine the shape of K for which the
expected value k = E(X) is maximal and minimal. A first attempt to
solve the problem was published by M. W. Crofton in 1885. Wilhelm
Blaschke [3] proved in 1917 that 42’22 <K< %, where the minimum is
attained only when K is an ellipse and the maximum only when K is
a triangle. The upper and lower bounds of x only differ by about 13%.
It has been shown, [2] that k = & for K a square.

A. Renyi and R. Sulanke, [8] and [9], consider the area ratio when
the triangle T is replaced by the convex hull of n random points. They
obtain asymptotic estimates of x for large n and for various convex
K. R. E. Miles [7] generalizes these asymptotic estimates for K a
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circle to higher dimensions. C. Buchta and M. Reitzner, [4], has given
values of k (generalized to three dimensions) for n > 4 points in a
tetrahedron. H. A. Alikoski [2] has given expressions for x when n = 3
and K a regular r-polygon. Here we deduce the whole distribution of
X for n = 3 and n = 4 when K is a square. From these distributions
we calculate some probabilities for the number of vertices of random
convex polygons. We also give some asymptotic estimates in the spirit
of Renyi and R. Sulanke. All calculated quantities of this paper have
been confirmed by Monte Carlo tests.

2. NOTATION AND FORMULATION.

As K, we will take the unit square (0 <z < 1,0 <y <1). We use a
constant probability density in K for generating n random points in K.
The coordinates of the points will be denoted (z,yx) for 1 < k < n.
Each z; and yy is evenly distributed in (0, 1) and they are independent.
Let T be the convex hull of the n points. We shall determine the
probability distribution of the random variable X = area(T)/area(K)
when n = 3 and 4.

The generated 7" spans a rectangle with sides parallel to the sides
of K. We will denote this spanned rectangle B and call it the "big’
rectangle. The random variable X, that we study will be written as
the product of two random variables

V = area(B)/area(K) and W = area(T)/area(B).

Roughly speaking, W describes the shape of 7" and V its size. We shall
show in section 3.3 that V and W are independent. We shall determine
the distributions of V' and W and combine them to get the distribution
of X =VW.

3. THE CONVEX HULL OF THREE POINTS.

For n = 3, the convex hull is with probability one a triangle having
maximal area = 1/2.

Without loss of generality (WLOG), we can name (=number) the
points after the size of their z-coordinates, so that

x1 < 29 < 3.

Then, the numbering of the corresponding y-coordinates will be a
permutation of 1, 2, and 3. There are 3! = 6 such permutations which
are equally probable to occur. Potentially, these 6 permutations cor-
respond to different geometrical configurations. However, a reversal of
the y-index sequence corresponds to turning the triangle upside down,
which doesn’t affect its area. This leaves us with 3!/2 = 3 sets of per-
mutations. Each set has a characteristic geometry and all sets have
the same probability of occurring. Such sets will be called cases. As
we shall see, two of these cases have the same kind of geometry, so we
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Case 1
2
+ +
3
0 +
1 perm = 132

Ficure 1. Triangle with point 2 on the boundary of
the ’big’ subrectangle that it spanns (Case 1) . The sum
of the areas of the small (dashed) subrectangles marked
with a + equals twice the triangle area.

are left with two cases needing consideration and these are depicted in
Figures 1 and 2.

Figure 1 depicts the y-permutation {1,3,2}. Changing to {3,1,2} will
flip the figure left-right, which preserves the geometry. This means that
the case depicted in Figure 1 occurs twice as often as that in Figure 2,
which corresponds to the permutation is {1,2,3}

3.1. The distribution of V. The horisontal side of the ’big’ rectangle
has length 3 — x,. The vertical side has length Y00 — Ymin-

The distribution function for the k-th ordered variable among n vari-
ables with density = 1 in (0,1) is

n!

(1) Fox(z) = ORI /Ow =11 — )" * dt.

For n = 3 the distribution functions for the smallest, middle, and
largest variables are

(2) Fyi(z)=1-(1-2)
(3) Fyslz) = 6 / 41— ) dt = 32% — 247,
(4) Fy3(x) = 2°.

The lengths of the intervals (0,z1), (z1,2), (2, 23), and(zs, 1) all
have the same probability distribution, namely F3;(z). The lengths
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Case 2

perm = 123

FIicUreE 2. Triangle with point 2 in the interior of the
'big’ subrectangle (Case 2). The difference of the areas
of the small (dashed) subrectangles marked with a + and
- equals twice the triangle area.

of the intervals (0,x2), (z1,23), and (z2,1) all have the same proba-
bility distribution, namely Fj3o(x). This implies that the sides of the
'big’ rectangle in Figures 1 and 2 have the probability distributions
F35(x) and F35(y) and these distributions are independent because
the z-coordinates are independent of the y-coordinates. Let G3(v) be
the distribution function for the area of the ’'big’ rectangle. We have
G3(v) =Prob(area = zy < v) = 1—Prob(zy > v). We get

Gs(v) =1 — / (1= Fya(v/)) dFs ()

= 2803 — 27v? — 6v%(3 + 2v) log(v), 0<wv < 1.

()

3.2. The distribution of W. We shall study the fraction W that the
triangle area takes up of its surcumscribed 'big’ rectangle B.

To avoid the factor 1/2 in the area formula for a triangle in numerous
places below, we will work with twice the fraction U = 2W and with
twice the fraction Y = 2X. Let H;;(u) = Prob(2W = U < u) in Case
1 depicted in Figure 1. Let Hj3y(u) be the corresponding probability
for Case 2 of Figure 2.

When the ’big’ rectangle is fixed, we have a constant conditional
density distribution in B. In Case 1, zo has a constant density in
(z1,23) and ys3 a constant density in (y1,y2). In Case 2. (x2,y2) has
a constant density in the ’big’ rectangle. For the calculation of the

'We are indebted to Maple for helping us calculate the integrals of this paper.
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(double) fraction U, we dilate the 'big’ rectangle so that it fills the unit
square. This doesn’t affect the fraction.

The middle coordinates (2, y3) in Figure 1 and (z9,y2) in Figure 2
determine a splitting of the ’big’ rectangle into four subrectangles. It
takes some time to realize that the area of the triangle in Figure 1 is
half the sum of the areas of the three subrectangles marked with a +.
In Figure 2, the area of the triangle is half the difference of the two
subrectangles marked with + and -.

In Case 1, we have U = 1—x49vy3, so we have U < u when zoy3 > 1—u.
We get

(6) ) )
Hg,l('l,b):/ de/ dys=u+ (1 —u)log(l —u), 0<u<l.
1—u (lfu)/:cz

In Case 2, we have U = |22(1 — y2) — (1 — z2)y2| = |2 — y2|. As-
suming that point 2 is below the diagonal, we have U = x5 — y». This
assumption is accounted for by the factor 2 in front of the following
integral

1 To—U
(7) H3,2(u)=1—2/ d:UQ/ dy, =2u—u?, 0<u<l.
u 0

Since Case 1 occurs twice as often as Case 2, we get the distribution
function for U irrespective of case as

(8)
H3(u) = —Hj(u) + = Hyo(u) = %(4u —u? 4+ 2(1 — u)log(1 — u)),
0<u<l.

3.3. V and W are independent. The variables V' and W are inde-
pendent because they depend on different 2- and y- values. In Figure
1, the size of the 'big’ rectangle, which determines V, is a function of
x1, Y1, Y2, and x3, The sizes of the subrectangles, which determine W,
are functions of z, and y3. In Figure 2, V is a function of x, y;, =3,
and y3, while W is a function of x5 and y,.

This arguement would not hold with a rotated coordinate system.
The deeper reason why V' and W are independent is that W depends
on variations along the sides of B while V' depends on variations or-
thogonal to the sides.

3.4. The distribution of X for three generated points. Let F3(x)
be the distribution function for X. We have X < z when Y = 2X =
2WV =0V <y
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density function for triangle area
124

o

X

FI1GURE 3. Density function for the area of an arbitrary triangle.

Fy(y/2) = / G (y /) dHy(u) =
(9) = [Gs(y/u) Ha(u / () -G () ds

/H3 Ggy/u) u, 0<y<I.

The partial intergration in (9) is used to avoid integrating to the
lower bound v = 0. To write the result, we need the v function

(10) U(z)) = /0 w dt

This function is the real part of the dilogarithm function Liy(x) dis-
cussed by Euler in 1768 and named by Hill, [5]. v(z) is well defined on
the whole real axis. Some properties of v(z) are given in Appendix A.

We will not carry out the integration (9) in detail, but will just give
the result

11) Fy(z) = %:(10——17x) 1627

(17 — 3log(2z)) log(2z)

2

2
+ 51— 162 — 680%)(1 — 22) log(1 — 2¢) + 162%(3 + 22) (v(2x) — %)
0<z<1/2.

The density function dF3/dzx is shown in Figure 3.
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The first moments and the standard deviation of the triangle area
are

2 11
12 = dF: = — .
(12) o /O vdFy(x) = =~ 076389,
(13) o :/;xQdF(x):i
2 o 3 967

(14) o=V —a?2 = @ ~ .067686.

144

4. THE AREA OF THE CONVEX HULL OF FOUR POINTS.

The convex hull of four points can be either a triangle or a quad-
rangle. The triangle case occurs if one point is generated inside the
triangle spanned by the other three points. The probability for this to
happen equals four times the expected size of the triangle = 4a; = %.

To find the distribution function for the area of the convex hull of
four points, we shall go about in the same way as above and number

the points so that
1 <29 <3 < X4,

The corresponding y, can be permuted in 4! = 24 ways. We form 12
sets each consisting of a permutation and its reversed permutation. All
these sets are equally probable to occur. The permutations, but not
the reversed ones, are listed in Table 1. The 13 cases in the table each
correspond to a geometrical configuration. Cases 1 - 5 are triangles,
cases 6 - 13 are quadrangles.

4.1. The distribution of V. Like the case with three points, the
generated convex hull spans a ’big’ rectangle with sides 4, — z; and
Ymaz — Ymin- Lhe distributions of these sidelengths are Fj3(x) and
Fy3(y) where

(15) Fy3(7) = 42® — 32"

In analogy with (5), we get the distribution function for the ’big’
rectangle

(16) Ga(v) =1— / (1= Fus(v/z)) dF1s(z) =
= 81v* — 800 — 12v3(4 + 3v) log(v), 0<wv < 1.

4.2. The distribution of U. We will have to determine a H, for
each of the 13 cases of Table 1. We must also determine the proba-
bilities for these cases to occur, which are given in Table 1. Each of
these cases requires the evalution of an integral in four-space over a
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case
# | permutation |1|2|3(4|5|6 |78 |9(10|11 12|13
1 1234 3 s |3
2 1243 3 2
3 1423 3 2
4 4123 5 :
5 4132 3 2
6 1432 : :
7 1342 3 2
8 1324 3 2
9 3124 3 2
10 3142 1
11 3412 1
12 4312 3 2
2 IR RARRREREE
E{U} HHEHHEBEIHEEIEE

TABLE 1. Probabilities of geometrical cases for each per-
mutation. Cases 1 - 5 are triangles. Cases 6 - 13 are
quadrangles. The Y-row is the sum of the probabilities
above. The E{U}-row shows the expectation of U for
each case.

set bounded by linear and nonlinear inequalities. Having limited ge-
ometrical intuition in four-space, each integral evaluation has been a
challenge. We are not going to describe all these calculations in de-
tail here but shall carry out the calculations for only one case in the
text. Two more cases are done in appendicies B and C. The author can
provide the interested reader with Maple files describing the remaining
cases.

Consider the possible geometric configurations that can occur for the
y-permutation 1234. These are shown in Figure 4.

In these figures, we don’t show the whole unit square but only the
'big’ rectangle. This rectangle has been enlarged by an affine trans-
formation so that it fills a unit square. This doesn’t affect the area
fraction that we are studying.

The triangle Case 4 depicted in Figure 4 is in fact the subcase of
Case 4 having point 2 as a vertex below the diagonal and point 3 as
an interior point. Case 4 also includes the situations with point 2
above the diagonal and point 3 a vertex below and above the diagonal.
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Case 4
4
-3
2
1
perm = 1234
Case 12 Case 13
4 74

3 /

3

1 perm = 1234 1 perm = 1234

FiGURE 4. Cases 4, 12 , and 13.

These four subcases all have the same probability and the same type
of geometry. We shall do the case in Figure 4.

For fixed values of x5 and y,, the conditional probability density
for point 3 is constant and equals 1/(1 — z3)(1 — 7o) in the rectangle
To <23 <1,y <y3 <1. We have the conditional probability that
point 3 is interior in the triangle spanned by 1, 2, and 4 :

L dx *3 d
A7) plosys) = / ’ / s
x 1

, 1 — 29 —(1—y2)(1—=3)/(1—z2) 1- y2.

This probability shall be integrated over all positions of point 2. The
density for point 2 is the same as for the smaller of two ordered points
in the unit interval, i.e. 2(1 — z9)dzy X 2(1 — ya)dy,. Notice that the
factors 1 — x5 and 1 — y, of the density cancel the same factors in (17).
We get
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Prob(triangle under diagonal with vertex in point 2) =

1 T2
= / 2(1 — x9) d$2/ 2(1 = y2)p(w2, y2) dya =
0 0

(18) 1 T2 1 T3
=4/ dxg/ dyg/ dxg/ dys =
0 0 T2 1-(1-y2)(1-=3)/(1—x2)

12°

The total probability for Case 4 is 14—2 = %, which is inserted in Table
1.

Case 13 is a quadrangle with points 2 and 3 on the same side of the
diagonal, see Figure 4. In analogy with (18), we get

Prob( quadrangle under dlagonal

—(1-y2)(1—z3)/(1—xz2)
Y2x3/T2

6

Case 13 also includes a quadrangle above the diagonal. This gives
the probability 2 = £ given in Table 1.

Case 12 is a quadrangle with one vertex above and one below the
diagonal, see Figure 4. It has the remaining probability = %

Returning to the distribution function for Case 4, we note that the
triangle is the same as in Figure 2. When point 2 is below the diagonal,
we have the same formula as in Case 2 for n = 3, so that U < u reduces
to 9 —yo < u. Since this inequality is linear, we happen to have one of
the simplest cases. The integral below is for the complementary event.

(20)

1 To—u 1 T3
H4,4(U,) =1- 48/ dZEQ/ dyz/ d.’L‘g/ dy3 =
u 0 T2 1—(1-y2)(1—z3)/(1—z2)

=3ut—8u+6u?, 0<u<l.

The factor 48 is 4 -(1/12)7!, where 1/12 is the probability calculated
n (18).

H,g(u) and Hy3(u) are calculated in appendices B and C. We pic-
ture all the cases and list their H,y(u) in Appendix D. The total
fraction probability distribution function denoted H, is obtained by
weighting the Hyy(u) together with 1/12 times the weights in the X-
row of Table 1. It is



(21)
(2 (24 + 84u — 16u° + u?)+
+3(1 —u?)log(l —u) — “i;ﬁ,
0<u<l,
Hy(w) = 5 L (=56 + 212u — 54u? — 8u® — 4)+ -
+2(9u — 7)(u — 1) log(u — 1) + 2u’v(u) — #,
\ 1<u<2

AREA OF POLYGON

_—

o 0.2 04 06 038 1 1.2 14 1.6 71.8 2

u

FIGURE 5. Density function dH4/du for twice the frac-
tion that the four point object takes up of the ’big’ rec-
tangle. The singularity at u = 1 stems from Cases 3, 6,
and 7.

The density dHy/du is shown in Figure 5.

11

4.3. The distribution of X for four generated points. In analogy
with (9), we can now form

Fu(y/2) = / Ga(y/u) dH, () =
= [Galy/u) Ha ()]} - /H4 )Gy /) du

Gu(y/2) — /H4 G4y/u) u, 0<y<2.

Substituting back y = 2x, we have the distribution function for the
area spanned by four points



12

JOHAN PHILIP

Density function for area spanned by four points

™\
/

\

\

FIGURE 6. Density function dF}/dzx for area spanned by
four points. Only .002 of the total mass is above x = 1/2.

(23)

-~

2(6 + 1302z — 85622 + 15742%)—
—222(z + 1) (z + 3)m—
—224(235 — 431log(2z)) log(2z)+
+3(1 + 2z — 1402% — 7922%)(1 — 2z) log(1 — 2z)—
+642%(3x + 4) (v(22) — ©),

0<z<1/2
—5(7 — 149z — 13652 — 762® + 1574")+

(7 — 114z — 6602 — 2962%) (22 — 1) log(2z — 1)—
2

+322%(z + 1) (z + 3)(v(22) — =),

1/2<z<1.

\

The density function dF}/dx is shown in Figure 6.
The first moments and the standard deviation of the four point area

are

(24)

1
o = / .’13dF4( ) = =& 15278,
0
! 859
= [ 2?dFy(z) = ——,
2 /O 27000
1
73
Qs =/ z® dFy(z) = 9000°
0
2 = 1795 ~ .09205.
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5. THE NUMBER OF VERTICES OF THE CONVEX HULL.

Our detailed study of the convex hull of 3 and 4 points permits us
to calculate some expectations for the number of vertices of a random
convex polygon in a square.

For k < n, define

gn(k) = Prob( n points generate a convex polygon with & vertices).

Of course, ¢3(3) = 1. We noted in the beginning of section 4 that
q1(3) = % implying ¢s(4) = %. These two probabilities can also
be deducted from the X-row of Table 1 as follows. The sum of the
elements of the first five cases, which are triangle cases, divided by 12
equals ¢4(3).

The knowledge of F3(z) permits us to calculate g,(3) for all n > 3.
In fact, we get a triangle if points 4 through n are generated inside the
triangle generated by the first three points. The probability 7(m) that

m points fall inside an area of size x distributed according to F3(z) is

r(m) = /0 " m apya).

Taking into account the number of ways the three points forming the
triangle can be choosen, we get

(25) 0 (3) = (;L)W(n— 3) = (’;) /0 s am ),

Some values are

11 ) 137
3) = — ~ .3056 3) = — ~.1042 3) = —— ~.0381
7 363
3) = — =~ .0146 3) = —— =~ .0058.

For £ = 4, we need the conditional probability that points 5 through
n are generated inside the area generated by the first four points, pro-
vided these four points span a quadrangle. Cases 6 - 13 are quadrangles,
so summing the Hyy for 6 < k < 13 multiplied by the weights in Ta-
ble 1 will give us the wanted conditional distribution function Hy,(u).
Combining H4, with G4 will give the conditional distribution function
Fy,(z). Including the probability % of getting a quadrangle, we get

(26) w@=2(7) [ o by,

Some values are

5 1307 203

From the above, we can deduce ¢5(5) =1 — 3 — 2 = 2 ~ 3402
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These numbers can be compared with those of Table 2, which con-
tains results from 10000 Monte Carlo tests for each n.

6. ASYMPTOTIC ESTIMATES

Reényi and Sulanke [9] consider the convex hull H,, of n random points
generated inside a convex set K. For large n, we have the following
formulas for the expected value Eg, (K) of area(H,)/area(K). The
formulas for K a square and a circle are from [9], while the formula for
K a triangle is deduced in Appendix E.

1 1
Ey, (triangle) = 1 — QM +0 <—> ,
8log(n

n
1
(27)  Ep,(square) =1 — 3 g ) +0 <ﬁ) ,
(247)2/31(8/3) o 1 33832
10n2/3 n) = T pB

Ey, (circle) =1 —

where v = .5772 is Euler’s constant.

These theoretical expectations are plotted in Figure 7 together with
the results from Monte Carlo tests.

Closely related to the above are the formulas for the expected number
of vertices FE, of the convex hull of n random points inside various
convex polygons K. For K a triangle, a square, and a circle and for
large n, we have

(28)
E, (triangle) = 2(log(n/2) + ) + o(1),

E, (square) = g(log(n/Q) + ) +o(1),

4 (37\?? 5 4 730\ /7
w4 (5) () - 4(5)°0 ) o
+0(n"2/3) ~ 3.3832 n*/® — 2.5084 n~1/3.

The formulas for the triangle and the square and the first term for
the circle are given in [8]. The second term for the circle is deduced
in Appendix F. This term is needed to get the accuracy for the circle
comparable to the other two.

The theoretical E,, and the result of the Monte Carlo tests are shown
in Figure 8. The formulas in (28) conform so well with the Monte
Carlo tests all the way from n = 3 so that the curves hardly can
be distinguished in Figure 8. We have F3(K) = 3 for all K. The
formulas in (28) give Ej(triangle) = 3.52, Ej(square) = 2.62, and
Ej(circle) = 3.14.



n = # points

k| 4 [ 5 ] 6 [ 7 ] 8] 9 [10] 12 15 [ 20 [ 40 | 100
3 [3068[1060] 374 [ 147 | 64 | 30 | 4 | 4 | 4

4 6932 | 5525 | 3627 | 2253 | 1379 | 876 | 562 | 236 | 70 | 27 | 2

5 3415 | 4731 | 4739 | 4185 | 3424 | 2732 | 1624 | 787 | 311 | 19 | 2
6 1268 | 2528 | 3407 | 3805 | 3944 | 3534 | 2448 | 1340 | 169 | 4
7 333 | 882 | 1599 | 2176 | 3066 | 3447 | 2677 | 715 | 52
8 83 | 254 | 538 | 1260 | 2256 | 2902 | 1700 | 237
9 12 | 42 | 246 | 777 | 1836 | 2379 | 645
10 2 | 27 | 190 | 700 | 2312 1286
11 3 | 23 | 175 | 1621 1920
12 2 | 30 | 714 | 2009
13 2 | 287 | 1785
14 58 | 1084
15 20 | 602
16 4| 267
17 81
18 19
19 6
20 1
E,[3.69 | 424 [ 468 | 5.06 | 5.39 | 5.69 | 5.95 | 6.43 | 6.99 | 7.72 | 9.56 | 11.98
o, | 46 | 63 | 74 | .81 | 89 | .94 | .99 | 1.08 | 1.18 | 1.30 | 1.60 | 1.95

TABLE 2. Number of vertices k£ for various number of generated points n.
The presented data are the actual outcome of 10000 Monte Carlo tests for
each n (= for each column). Notice that the largest number of vertices

observed for n = 100 is 20. The last two rows give the average and
standard deviation for each n.

NODATOd 40 VHYYV

qT
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1
triangle
0.8
circle
0.6 1
E

0.4 1
0.2+

o 20 40 60 80 100

n

FIGURE 7. The fraction of the area that the convex
hull of n random points takes up inside a triangle (top),
square (middle), or circle (bottom curves). The thicker
lines are theoretical from [9] and Appendix E, the thinner
are from Monte Carlo tests.

E,(square) can be compared with the averages in the last row of
Table 2, which holds the numbers

(29) Ey(n) = kqn(k).

7. CONCLUDING COMMENT.

We have not shown any integral calculations in detail. In principle,
they are elementary, which doesn’t mean that they don’t require a sub-
stantial effort. As indicated, the calculations have been done in Maple.
The calculations would not have been possible without some tool for
handling the huge number of terms that come out of the integrations.
This doesn’t mean that Maple performs the integrations automatically.
Generally, we had to split up the integrands in parts and use a particu-
lar substitution for each part. Often, we had to do partial integrations
manually. Many integrals were improper, calling for a limiting process.
We will supply any interested reader with Maple files describing the
calculations.
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16

144 .
1 circle

12+
1 square

10

triangle

0 20 40 60 80 100

n

FIGURE 8. Expected number of vertices of the convex
hull of n random points inside a triangle, square, or circle.
The thicker lines are theoretical, the thinner are from
Monte Carlo tests. The difference between theory and
tests is hardly discernable.

APPENDIX A

The dilogarithm function Liy(z) is defined in [6] for complex = as

Tlog(l—t
(30) Liy(z) = — / %dt.
0
When z is real and greater than unity, the logarithm is complex. A
branch cut from 1 to oo can give it a definite value. In this paper, we
are only interested in real z and the real part of Lis

(31) v(z) = Re(Liz(z)) = — /0 ’ w dt.

We have the series expansion
(32) v(z) = Re(Lis(z)) = » o el <1
k=1
Although the series is only convergent for |z| < 1, the integrals in
(30) and (31) are not restricted to these limits and the v function is
defined and is real on the whole real axis. We use this function for
0<z<2.
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D

FIGURE 9. The function v(z).

The definition of the dilogarithm function has varied a little from
author to author. Maple has the function polylog(2,z) which is de-
fined by the series expansion (32) for |z| < 1 otherwise by analytic
continuation. Maple also has a function dilog(z) = Lis(1 — z) defined
on the whole real axis. Maple’s dilog function is the same as the dilog
function given in [1], page 1004.

v(z) is increasing from v(0) = 0 via v(1) = 7%/6 to v(2) = 72/4.

The integrals involving v(x) needed for calculating the moments of
various distributions take rational values like

/Oixdu(:v) -1, /I:xdl/(x) -1,
/0 2 dvr) = /1 o () =

1 11 2
/ ?dv(z) = =, / 2 dv(z) = —9
; 18 . 18

APPENDIX B

bl

DN | Ot

We shall show in detail how the distribution function Hyis(u) is

calculated in Case 13. The quadrangle of this case is shown in Figure
4.

In analogy with the reasoning for triangle Case 2, we get that the
doubled fraction of the big rectangle is

(33) U= ((1 - y2)$3 - (1 - 332)?13)-
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y3 y2

u=const.

y2

x3 x2

(@ (b)

x2

FIGUrReE 10. (a) Trapezoid to integrate over in z3ys-
plane. (b) Areas to integrate A and B over in z,yo-plane.

We have
(34) Hya3(u) = Prob(U < u) = Prob((1 — yo)z3 — (1 — 22)y3 < u).

We shall integrate over the set used in evaluating (19) though with
the supplementary bound (1 — ys)z3 — (1 — z2)ys < u. When x5 —y, <
u < 1 —1yo/xy, we shall integrate over the trapezoid in the x3, y3-plane
marked in Figure 10a.

We get the trapezoid area
(35)

To(u — T2 + yo)? (u — 29 + o) (22 — Y2 — uz2)
2(1 = z9) (w2 — 1) (1 —x2) (72 — y2)

The area is zero for u < xg — yo. For u > 1 — ys/xo, the area is the
the same as for u = 1 — y5/x9, namely

A(z2, Y2, u) =

(36) B(2s, ys,u) = (w2 — y;l(; — 332).

These two expressions shall be integrated over the triangles marked
in Figure 10b.
The obtained distribution function is

(37) Hyiz(u) = u(6 + 3u — 8u?) + 6(1 — 3u)(1 — u) log(1 — u)+
12v*v(u) — 2u*r?, 0<u < 1.

The corresponding density function dHy 13/du is shown in Figure 11.

ApPPENDIX C

We shall show in detail how to calculate the distribution function
H,g(u) for the area fraction in Case 8. The quadrangle of this case is
shown in Figure 15. For ease of computation, we shall carry out the
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1.6 //7\
1.4 /
/
/

1.29 /

/

/

/ \
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1 /
/ \
/ \
0.8 / \
/ \
/ \
o064 |/ \
/ \
/
i \
/ \
04 | \
/
/ \
/ \\
0.2 /f \
0 o2 04 o6 o’s 1

FIGURE 11. The density function dHy 13/du.

calculations for this quadrangle turned upside down, namely for the
permutation 3214 which is the reverse of the one in Figure 15. Then,
the conditions describing Case 8 are

T
x—2+%§1,xzéxs,y2§y1,xs(l—y2)+y1(1—xz)éu-
3 1

These inequalities describe the trapetsoidal domain in the z,ys-space
marked in Figure 12a. For (1 —z3)(1 —y;) > 1 — v and z3 + y; > u,
the area of the domain is

z3y1 (T3 + vy — u)?
38 A = — )

The area is zero for (1 — z3)(1 —y1) < 1 — u. For z3 + y; < u, the
area is the the same as for v = x5 + y;, namely

x
(39) B(ea, 1, u) = 5"

For 0 < u < 1, these two expressions shall be integrated over the
areas marked in Figure 12b. For 1 < u < 2 the areas are shown in
Figure 12c. We get

—6u + 13u® — 2(3 — 5u)(1 — u) log(1 — u)—

—4u?v(u) 0<u<l1

H — Y — — 7
1800 = 15 4 360 — 14u? — 5202 /3+

+4(3u — 1) (u — 1) log(u — 1) + 8u?v(u), 1<u<2.

The corresponding density function dHyg/du is shown in Figure 13.

APPENDIX D

The Hy i-functions for the four point problem are given below. If no
specification is given, the functions are defined for 0 < u < 1.
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y2

u=const.

X2
x3

(a)

yl=u-1

® ©
FIGURE 12. Areas to integrate over in Case 8. (a)
Trapezoid to integrate over in zsyo-plane. (b) Areas to
integrate A and B over in z3y;-plane when 0 < u < 1.

(c) Areas to integrate A and B over in z3y;-plane when
1<u<?2.

254 A

N

02 04 06 o8 1

12 14 16 18 2

u

FIGURE 13. Density function dH,g/du for two times the
fraction that the quadrangle takes up of the ‘big‘ rectan-
gle in Case 8. The peak value is 16 — 472 /3.
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Hyp =14 (1 —u)*(7— 4u+ 6log(1l — u)).
Hip=1—(1—u)(1+7u—2u?*+6(1 —u)log(l — u)).
His=u+ (5u+2(3 —u)(1—u)log(l —u)).
H,, = 6u? — 8u? + 3u®.
Hys = 4u® — 3u*.
Hig=(u—1)5u—9—2(u+1)log(u — 1)), 1<u<2.
Hyz=u+ bu+2(3—u)(1—u)log(l —u)).

—6u + 13u? — 2(3 — 5u)(1 — u) log(1 — u)—

—4u?v(u), 0<u<l,
Hag = 2 2,2

—15 + 36u — 14u® — 57°u?/3+

+4(3u — 1)(u — 1) log(u — 1) + 8u?v(u), 1<u<2.
Hyg = 6u — 9u® + 4u® + 6(1 — u)*log(1 — u).

—3u+ 9u?/2 — u — 3(1 — u)?log(1l — u), 0<u<l,
Hyi0 = 5 5 A

—3+3u+3u?/2 —u®+3(u—1)*log(u—1), 1<u<?2

2u3 — 5ut/4, 0<u<l,
Hyn = ) s 4

—3+8u—6u’+2u’ —u*/4, 1<u<2.

Hy o = 6u” — 8u® + 3u’.
Hyz3 = u(6+ 3u — 8u®) + 6(1 — 3u)(1 — u)log(1 — u)
+ 12u2v(u) — 270>

The cases are shown in Figures 14 and 15.

APPENDIX E

We shall deduce the limit formula for large n for the expected area
fraction of a triangle

log(n) + v
n b

Ey, (triangle) =1 — 2

where 7 is Euler’s constant.
We shall use the technique of Rényi and Sulanke, [9] and start with
their formula

(40) Ey, (triangle) = 12F3/ / — f/F)"2*pdpd,

where F'is the area of the triangle, f is the smaller of the two areas
that the triangle is divided into by the line x cos(¢) + y sin(¢) = p and
[ is the length of this dividing cut. The origin is supposed to be inside
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Case 1

Case 2

perm = 1243
u=1-—123y4

Case 3

perm = 1423
u=1-—123y4

Case 4

-3

-3

perm = 1432
u=1-— 2y,

Case 5

perm = 1234
U=2T2— Y2

Case 6

o2

perm = 1324
U =123 —Ys

perm = 3142
u=1+ (z3— 12)(ys — y1)

FIGURE 14. Cases 1 - 6.

23
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Case 7 Case 8
3
2
4
1
4
perm = 3412 perm = 4123
u=1— (23— x2)(th — va) u=(1—22)(1 —91)+ yows
Case 9 Case 10
3
3
4 2
4
2
1
perm = 1243 perm = 1423
u=1-y; —ys(rs — z2) u=1—z94 23(y2 — Ya)
Case 11 Case 12
4 4
3
2
3 2
1
perm = 1324 perm = 1234
U=12T3— T2+ Y2 — Y3 U=1=Ty —T3+Ys — Y2

FiGurE 15. Cases 7 - 12. Case 13 is in Figure 4.
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xcos(Vv)+ysin(v)=p
xcos(Vv)+ysin(v)=p(v)

-1 1/2

N

xcos(Vv)+ysin(v)=pl(v)

F1GURE 16. Triangle for calculation of Ey,

the triangle and we shall use the equilateral triangle depicted in Figure
16, which has the area F' = 3/3/4. p(¢) is the largest p for which
the line intersects the triangle. By the symmetry of the triangle, the
¢-integral can be replaced by 6 times the integral from 0 to 7/3. We
have two cases: (i) the line intersects the top and bottom sides of the
triangle or (ii) the line intersects the top and right hand sides of the
triangle. We have case (i) when

OSPSMW%=WWQ_;%mwX

In case (i), we have

Lm o3 @ S cos(@) + 2peos(d) +p7

4cos(¢)” — 1 F 3 4cos(4)” — 1
We have case (ii) when

p(9) < p < p(@) = =& +2\/§ sin(¢)

In case (ii), we have
I — p(¢) —p
sin(¢) \/1 + 2cos(¢)(cos(¢) + v/3sin(e))

and

f 2 (p(¢) — p)?

7'2:1——21

F B 3v/3 1 — cos(¢)(cos(¢) — v/3sin(¢))
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The integrals arising from the two cases will be denoted J; and Js,
so that Ey, (triangle) = J; + J, where

16n(n—1) [™°
n(n / 204 dp dé

J =
TO81V3

and

16 -1 /3 rp(®)
SIS

Here, we integrate over 0 < ¢ < 7/6 in J; because p; < 0 for ¢ > 7/6.
For the evaluation of .J;, we substitute p by z by putting p = x cos(¢).
The integral over p then transforms to

_v3tan " 1—+v/3tan 2
/(1 V3t (¢))/2(1+$)2nx e 1+ $)2 +1 - 1 ( (¢))/
0 2(n+1) 2n+1

After inserting the bounds, we have a remaining ¢-integral in which
we substitute ¢ by s by putting tan(¢) = v/3(1 — s)/(1 + s). After
skipping terms of the order 97", we get.

~ n(n - 1) ' n_ n—1 _
Ji & S+ 1)2n+ 1) /1/2((4n—|—1)s 2(n+1)s"")ds =

_ n-1) [(471 + 1™ 2(n+ 1)8"] 1 '
1/2

~3(n+1)(2n+1) n+1 n
We get for large n

1 5 1
Jx-——4+0|—=).
"3 3n * <n2>
For the evaluation of J5, we substitute p by = and ¢ by ¢ by putting

p:p(¢)_\/3sin( ) (sin(6) + v3cos(d))z - Vit

and ¢ = arctan(

2n 2n—t"
After tedious manipulations we get
-1 o1 (t 9
- n / dt/ ]_ — — $3/2(nt*3/2 +t*1/2 _ 3$1/2t71) dl',
3n?
where
t, 0<t<n/2
m(t) = , /2.
(n+)?/9%, n/2<t<n

For n/2 <t < n we have 4n/9 < (n + t)?/9t < n/2, meaning that
(1—2)"=2 is smaller that (5/9)"~2 for these ¢. By putting z1(t) = n/2
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for n/2 < t < n and reversing the order of integration, we have with
good approximation for large n

-1 n/2 n—2 n
0 T

3n? n

= // (1= 5)" [2tn — )z — 3(08(n) — log(x))s?] dr.

3n? n

We make an error of at most the order n?2 by extending the
upper limit of integration to infinity. We have the following expansions

o n—2 1 1 1
/ (1—£) xd:c—1+———8+0<3)

0 n n

o AN 40 1

/0 (1—;) xd$_2_ﬁ+0<$>’

o0 n—2 1
/ (I—E) :1:210g(x)d3::3—2’y+0<—).
0 n n

Using these expansions for the above integral, we get

2 21 2 5/3 1
gl ogn+2y+5/ +O<—2>.

3 n n
Altogether, we have

—n/2

1 1
Ey (triangle) = Jy + J, ~ 1 — 2128 7 1 (—) ,
where 7 is Euler’s constant.

ApPPENDIX F

We shall deduce the formula for the expected number of vertices of
the convex hull of n points inside a circle given in (28). We use the
method of [8] and are led to the evaluation of the following integral,
similar to (40)

2w
(41) E,(circle) = 3F2/ / — f/F)" 1 dpdg,

where F' is the area of the circle. We use a circle with radius one
centered at the origin. The cutting line is z = p. We put p = cos(«)
and get the length of the cut [ = 2sin(a). The area of the circle
segment is f = a — sin(«) cos(a). We get

=) [ ammheme)
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Series expansion of the trigonometric functions gives

8n(n—1) [™? 1/2 4, 2 e

Use the substitution %oz?’ = = and get

mn/4 5/3 7/3\ \ "2
o (/3 —p—2/3 _r z z :
E,=2(n’"—n )/\/0 (1 n—i—u(n) —i—O((n) ))
2/3\ 4
. (1—)\(£> > 2?3 dz,
n

T T\ 5/3 \7/3\ \ "2
We have (1—;—{—”(5) +O<(5) >> -
= (1+,ux/ n=2/3 _ 2/2n+2x/n+0(n_5/3)).

Inserting this in the integral, we get
win/4 win/4
E, ~n'/? 2)\/ e 2?3y —n 3 2)\2/ 23 dg+
0 0

n2n/4
+n 3 2)\u/ - 7/3d$+0( _2/3).
0

We make an error of negative exponential order by extending the upper
limits of the integrals to infinity and get

4 2/3 4 4/3
E,(circle) =~ - 3_7r r ? nl/3 — — 3_7T T z n 34
3\ 2 3 15\ 2 3

+0 (n%?) ~ 3.3832 n'/® — 2.5084 n~'/3.
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