
An And�Or�Parallel Implementation of AKL

Johan Montelius

jm�sics�se

Khayri A� M� Ali

khayri�sics�se

Abstract

The Agents Kernel Language �AKL� is a general purpose concurrent
constraint language� It combines the programming paradigms of search�
oriented languages such as Prolog and process�oriented languages such as
GHC�

The paper is focused on three essential issues in the parallel imple�
mentation of AKL for shared�memory multiprocessors� how to maintain
multiple binding environments� how to represent the execution state and
how to distribute work among workers�

A simple scheme is used for maintaining multiple binding environ�
ments� A worker will immediately see conditional bindings placed on
variables� all workers will have a coherent view of the constraint stores� A
locking scheme is used that entails little overhead for operations on local
variables�

The goals in a guard are represented in a way that allows them to
be inserted and removed without any locking� Continuations are used
to represent sequences of untried goals� The representation keeps the
granularity of work more coarse�

Available work is distributed among workers in such a way that hot�
spots are avoided� And� and or�tasks are distributed and scheduled in a
uniform way�

� Introduction

The Agents Kernel Language �AKL� is a general purpose concurrent constraint
language� It combines the programming paradigms of search�oriented languages
such as Prolog and process�oriented languages such as GHC�

This paper presents the design of a parallel implementation developed at
SICS� In a parallel implementation several problems have to be solved� how
to handle the multiple binding environments� how to manipulate the execution
state� how to distribute available work and how to manage storage and perform
garbage collection�

The computational model of AKL gives two orthogonal reasons for main�
taining multiple environments� One is due to the deep guards� the other to the

�

non�deterministic execution� In the implementation the multiple environments
created by non�deterministic execution are handled by explicit copying of struc�
tures in the execution state� The binding scheme need therefore only handle
multiple environments caused by the deep guards�

The binding environments should be represented in a way that induces as
little overhead as possible but at the same time allows several processes to
execute in parallel without too much interference� The perfect solution does of
course not exist� any solution will have to make some sacri�ces� the question is
when the penalty should be taken�

The question of how the execution state should be represented and manipu�
lated is not as critical as the binding scheme� The operations on the execution
state are not as frequent as the operations on terms� The only critical part is
the management of goals� new goals are constantly created and solved goals are
removed� and these operations must be performed as e	ciently as possible�

Distribution of work is an area in which little research has been done� Most
work has been done for
at committed choice implementations and for or�parallel
implementations of Prolog� These implementations need only consider one type
of parallelism� The Andorra�I system is one of the few implementations where
research on load balancing for both and� and or�parallel work has been con�
ducted ��
� The solution in our implementation is as will be seen quite di�erent�

Managing the storage heap and garbage collection has been presented in
another paper ��
�

Section � gives an overview of the computation model and execution state
of AKL� An introduction to the computation model of AKL can be found in
��
� For a formal treatment� see ��
� Section � presents the binding scheme� It
also includes an evaluation and justi�cation of the scheme� Section � describes
how the execution state is represented� Section � describes how available work
is represented� scheduled and balanced among processors �workers�� This work
is still at an early stage so no evaluation of the scheduling procedures has been
made� Section � is a summary of the paper�

� The Computation Model

The AKL computation model is de�ned as a set of transformations of an exe�
cution state called the con�guration� The operations on the con�guration are
de�ned by set of rewrite rules� There are four determinate rewrite rules �try�
pruning� promotion and failure� and one non�determinate rewrite rule �choice
splitting�� We will �rst describe the structure of a program� then the structure
of a con�guration and the rewrite rules� Finally we will explain how a worker
performs the operations on a con�guration�

�

a program

An AKL program is a set of predicate de�nitions� Each predicate is de�ned by
a set of guarded clauses consisting of a head� a guard� a guard operator and a
body� The head is a program atom� the guard and body contain program atoms
and constraint atoms� There are three types of guard operators� conditional�
commit and wait� All clauses of a de�nition has the same type of guard operator�

the con�guration

A goal is either a program atom� a constraint atom or a choice�box� A choice�box
represents the execution of a program atom and contains a sequence of guarded
goals� Each guarded goal represents a guarded clause and consist of a guard�
a guard operator and a body� The guard is represented by an and�box� An
and�box contains a sequence of goals� a set of constraints and a set of variables�
The body is represented by a sequence of atoms� The root of the con�guration
is an and�box� We will in this paper informally refer to the children� siblings
and parents of boxes�

con�guration

hand�box i ��� and�hsequence of goalsi�
hset of constraintsi
hset of variablesi

hchoice�box i ��� choice�hsequence of guarded goalsi�

hguarded goal i ��� hguard ihguard operatorihbody i

hguard i ��� hand�box i

hbodyi ��� hsequence of atomsi

hgoal i ��� hchoice�box i j hatomi

hatomi ��� hprogram atomi j hcontraint atomi

hguard operatori ��� � j � j� j � �conditional� commit� wait�

A variable is local to an and�box� referred to as the home of the variable�
Variables that have their home in the path from the root to the and�box are
external to the and�box� The sets of constraints in the con�guration form a
hierarchy of constraint stores� A constraint on a local variable is called an
unconditional constraint� A constraint on an external variable is called a con�

ditional constraint� Constraints are only visible in the subtree formed by the
and�box in which the constraint resides�

An and�box is solved if the sequence of goals is empty� An and�box is quiet if
all constraints on external variables are entailed by the constraint stores above
the and�box� Since a guard is represented by an and�box we will also speak
about solved and quiet guards and guarded goals� A solved and�box and���V
can be written as �V �

�

An and�box is stable if no determinate operation can be performed in the
subtree formed by the and�box even if a satis�able constraint on an external
variable is added to the con�guration� The notion of stability is central to the
idea of combining search and concurrency�

rewrite rules

The rewrite rules are described as transformations of a component in a con�g�
uration� The letters R and S denote sequences of goals� A denotes an atom� B
denotes a sequence of atoms� G denotes an and�box� E and F denote sequences
of guarded goals� U and V denote sets of variables and � and � denote sets of
constraints� The symbol � will be used instead of a guard operator�

try

A program atom is tried by replacing it by a choice�box with one guarded goal
for each clause in the de�nition� Each guarded goal will have a guard� a guard
operator and a body that correspond to the a guarded clause in the de�nition�
The guard will have a set of local variables and a set of constraints that uni�es
the arguments of the program atom with the arguments of the head of the
clause�

and�R�A� S��V � and�R� choice�G�
U�B� � � ��� S�

�
V

A constraint atom is tried by removing the atom and adding the corresponding
constraint to the set of constraints�

and�R�A� S��V � and�R�S�
��fcg
V

pruning

A guarded goal that is solved and quiet may� depending on the guard operator�
prune its siblings whereby the pruned guarded goals are removed from the con�
�guration� The wait guard operator does not allow pruning� The commit guard
operator allows pruning in both directions� The conditional guard operator only
allows pruning of the siblings to the right�

choice�E� �V j B�F �� choice��V j B�
choice�E� �V � B�F �� choice�E� �V � B�

promotion

If a choice�box has a single solved guarded goal as its only child the guarded
goal may� depending on the guard operator� be promoted� A guarded goal is
promoted by replacing the parent choice�box with the body of the guarded goal
and adding the constraints and variables of the guard to the parent and�box�

�

The commit and conditional guard operators require that the guard is quiet�
The wait guard operator does not place any extra requirements on the operation�

and�R� choice��V�B�� S��U � and�R�B� S����U�V

failure

A choice�box with no guarded goals is removed and the false constraint is added
to the constraint store of the and�box�

and�R� choice��� S��V � and�R�S�
��f�g
V

If the set of constraints of an and�box is disentailed� by the constraint stores
above the and�box� it fails� A guarded goal containing a failed guard is removed
from the con�guration�

choice�E�G�
V�B�F �� choice�E�F �

choice splitting

A candidate is a solved guarded goal with a wait guard operator� If an and�box
is stable and the subtree formed by the and�box contains a candidate� a choice
splitting operation can be performed�

and�R� choice��V �B�E�� S��U �

and�R� choice��V �B�� S��U � and�R� choice�E�� S��U

The choice splitting rule will duplicate work �R and S�� something that must be
avoided until all other possibilities have been tried� The stability requirement
prevents the split operation until it is known that no determinate operation can
be performed in the and�box�

A stable and�box is in some sense in a deadlock i�e� no computation can
proceed without additional information in form of new constraints� The choice
splitting operation will as a result create an and�box with a choice box that is di�
rectly eligible for promotion� The promotion will hopefully add new constraints
to the and�box making determinate operations possible� The deadlock situa�
tion is thus broken by the transformation� Since choice splitting and promotion
are connected� the two operations are often referred to as �non�deterministic
promotion��

In a naive implementation� stability detection can be avoided by treating
the whole con�guration as trivially stable when all determinate operations have
been performed� This will of course sequentialise all split operations but this is
not the biggest problem with such an approach� The biggest problem is that
the root can not be treated as stable since it will interact with the outside
world� Some goals in the root of the con�guration will be connected to streams
of information that in a reactive program can contain information that will
add constraints to the con�guration� Any implementation used for real reactive
systems must therefore be able to detect stability correctly�

�

the worker

A worker is a process that performs the transformations of the con�guration�
It is always �positioned� in an and�box or choice�box in the con�guration� The
box in which the worker is positioned is called the current box�

The worker is driven by a set of tasks� where each task is associated with an
and�box or choice�box in the con�guration� The worker must handle all tasks
in the current box before it is allowed to move up to the parent box� During
the execution of a task it may generate new tasks� but all new tasks will be
associated with boxes in the subtree formed by the current box�

By ensuring that a worker always performs all tasks in a box before it can
move up� half of the problem of detecting stability has been solved� If a worker
is about to leave an and�box we know that all determinate operations within
the and�box have been performed� The remaining problem is to determine if a
constraint added above the and�box can make a determinate operation possible�

In the following sections we will not talk about guarded goals� Since each
guarded goal contains an and�box� we will talk only about and�boxes�

� The Binding Scheme

The constraints are in this presentation limited to equality on rational trees�
Constraints will be referred to as bindings� Several solutions to the problem
of maintaining multiple binding environments have been published ���
 gives
a good overview and comparison�� These solutions are however designed for
or�parallel systems where di�erent bindings exist in di�erent or�branches in an
execution state�

In the implementation or�nodes are not used� alternative environments are
created by explicitly copying all structures involved� The implementation need
only handle bindings on di�erent levels in the con�guration� Since the levels
in an AKL con�guration normally are fewer than the levels of or�nodes in a
Prolog execution� a very simple scheme can be used� The scheme is close to the
computation model and places little overhead on the most frequent operations�

term representation

Terms are represented by tagged pointers� In this presentation it is su	cient to
distinguish unconstrained variables �UVA�� constrained variables �CVA�� term
references �REF�� atoms �ATM� and structures �STR��

An unconstrained variable holds� apart from its tag� a reference to the home
and�box� The reference is called environment identi�er �env�� A constrained
variable holds a reference to a structure holding the environment identi�er and
a list of suspensions� All variables are created as unconstrained variables� only
if a suspension is added to the variable will it turn into a constrained variable�
The term reference is used for variable�variable bindings� The dereferencing

�

STR

CVA

ATM a

Y:

X: UVA

REF

env

env

env

susp

foo/4

Figure �� foo�X�a�Y�X�

procedure will follow any term references until a structure� an atom or variable
is found�

Atoms hold only an identi�er� typically a short integer or an index to an atom
table� Structures hold� apart from the functor and its arguments� an environ�
ment identi�er� Figure � shows an example of how the structure �foo�X�a�Y�X��
�where the variable �Y� is constrained� can be represented�

Note that the representation of variables is di�erent from the representation
of variables in WAM ���
 where unbound variables are represented by a self�
reference� This means that care must be taken when a variable is bound to
another variable or copied to a register� In WAM the pointer is simply copied
and automatically becomes a reference to the variable� In the representation
described a new term reference has to be created� The self�reference is used� as
will be described later� as a lock�

who is local�

A promotion of an and�box will mark it as promoted and insert a forward refer�
ence to its parent and�box� To check whether a variable is local� the environment
identi�er of the variable is compared with a pointer to the current and�box� If
they are equal the term is local� otherwise the environment identi�er is exam�
ined� If it refers to a promoted and�box the forward pointer is used for the
comparison� This step is repeated� if a non�promoted and�box is reached the
variable is external� This scheme is similar to the scheme designed in ���
�

binding lists

Unconditional bindings can never be removed and can therefore be recorded
in place� i�e� the value of a variable is permanently replaced by the binding�
Conditional bindings must only be visible in and below the and�box in which
the binding occurs and are therefore recorded in a binding list local to the and�
box�

A binding list consists of an entry for each constrained external variable�
An entry contains� apart from a reference to the variable� the binding of the

�

and-box

and-box

Y: CVA

binding list suspension entry

suspension

suspension

ATM 5

and-box

binding list proper entry

Figure �� the hierarchy of suspensions

variable or a list of suspensions� An entry that contains a list of suspensions is
called a suspension entry� An entry that contains a binding is a proper entry�

A suspension contains a reference to an and�box and a reference to an entry�
A suspension on a constrained variable refers to an and�box immediately below
the home of the variable� This and�box contains either a proper entry or a
suspension entry for the variable� A suspension of a suspension entry refers to
an and�box immediately below the and�box to which the entry belongs� The
hierarchical structure of the suspensions is used both to maintain locality of
suspensions and to detect stability� Figure � shows a constrained variable � Y�
and the hierarchy of suspensions�

To �nd the current binding of an external variable each binding list from
the current and�box to �but not including� the home of the variable must be
examined� If no entry is found the variable is unbound� If an entry is found
which binds the variable to another variable the binding of this variable must
be found�

adding a binding

A local variable is bound to a structure or atom by replacing the value of the
variable with the structure� A local variable is bound to another variable by
replacing its value with a term reference to the other variable� If the bound

�

variable is constrained the suspended and�boxes are woken�
An external variable is bound to a structure or atom by �rst adding a proper

entry to the local binding list� If the binding list contains a suspension entry
for the variable this entry is reused and the suspended and�boxes woken� If no
suspension entry was found in the current and�box the hierarchical structure of
suspensions must be updated� Suspensions are added to each binding list from
the parent and�box to �but not including� the home of the variable and to the
variable itself� If the variable is an unconstrained variable it is turned into a
constrained variable�

In a variable�variable binding where both variables are external� care must
be taken� The least external �the variable whose home and�box is closer to the
current and�box� is bound to the most external� If both variables belong to the
same and�box either direction can be chosen but suspensions must be added for
both variables�

waking an and�box

When an and�box is woken the worker knows which entry is to be re�examined
and this entry is removed from the binding list� If the entry is a proper entry the
uni�cation is retried� If the entry is a suspension entry the suspended and�boxes
are woken�

Notice that the hierarchical structure of suspensions gives perfect informa�
tion about which and�boxes must be woken� It is not necessary to examine an
and�box to determine if it is below the current and�box and thus is to be woken�

locking

The description above does not consider how the binding scheme works in a
parallel implementation� where more than one worker can access and modify
the representation� To guarantee a consistent state a locking scheme is needed�
This section describes a locking scheme that allows several workers to add new
bindings in parallel�

A variable is locked by atomically exchanging its current value with a refer�
ence to the variable itself� If a self reference is returned the locking operation is
retried� The circular reference will lock the access to the variable� Any worker
that tries to dereference the value will be stuck in a loop until the lock is released�
so the locking scheme does not change the dereference procedure�

There are two possible hazards in the binding scheme� circular references
and deadlock situations� If two local variables are uni�ed the binding scheme
does not specify the direction of the binding� Two workers might create a
circular reference �one worker places a reference in �X� to the variable �Y� while
another worker places a reference in �Y� to �X��� If two external variables of
the same and�box are uni�ed� suspensions should be added to both variables�
Both variables must therefore be locked and a deadlock situation might occur�

�

To make the binding scheme deadlock free and to avoid circular bindings a well
de�ned order of variables must exist� The order can be de�ned by the address
of the variable��

Notice that by locking the variable itself no other worker can add an entry
for the variable during the binding operation� This prevents two workers from
simultaneously adding a conditional binding for the same variable� This is a
drawback but can also be used as an advantage� When a worker has locked a
variable it knows that no entries for this variable will be added to the binding
lists� This means that the binding list can be searched for matching entries
before new entries are added� A lock is of course needed to synchronize the
manipulation of the binding lists� Each and�box has a lock that protects the
list�

stability

Stability of an and�box is detected by examining the entries in the binding list� A
living entry for a variable is either a proper entry for the variable or a suspension
entry that refers to a living and�box with a living entry for the variable� An
and�box is living unless it is marked as dead by a failure or pruning operation�
An and�box is unstable if and only if it holds a living entry�

Observe that the stability check is driven by the suspension entries of the
current and�box� There is no need to traverse the subtree to look for proper
entries for external variables� since any such entry would reveal itself as a sus�
pension entry in the and�box� The price for this is paid when external bindings
are added but� as will be shown� the number of external bindings is very small�

A stable and�box is eligible for a choice splitting operation� The choice split�
ting is implemented by making a copy of the subtree formed by the candidate�s
parent and�box� The siblings of the candidate are not copied and the candidate
is removed from the original subtree�

how do we copy�

When the subtree is copied new instances must be made of all variables that
are local to the subtree� Variables that are external to the subtree should be
shared by the two copies� The environment identi�er of a structure is used to
determine if the structure is local to the subtree� Structures that are external
to the subtree cannot contain local variables and can be shared by both copies�

The copying procedure is a three�phase operation� In the �rst phase a copy
of the tree is created but no terms are copied� A copied and�box is marked
as copied and given a forward pointer to the copy� In the second phase terms
are copied� If the environment identi�er of a variable or structure refers to a

�The order need only be preserved during the lock operation� not during the whole

execution�

��

marked and�box the term is local to the subtree and should also be copied� The
third phase will reset all marked and�boxes and forward pointers�

Forward pointers can be used in local structures to enable copying of circular
structures and avoid duplicating shared structures� The local structures are not
accessible to any other worker and can be modi�ed freely�

A copy operation can be performed by a worker independently of the exe�
cution in other parts of the con�guration� No external structures are modi�ed
during the operation�

Ground terms need not be copied� As soon as it is determined that a struc�
ture is ground �during copying or garbage collection� a null identi�er can replace
the original identi�er� In subsequent copy operations the ground term can be
shared�

The overhead of creating the environment identi�er is large for smaller struc�
tures such as lists cells but the environment identi�er in a structure is not strictly
necessary� External variables and ground structures can be shared and a struc�
ture need only be copied if any of its components needs to be copied� However�
the existence of the environment identi�er makes the detection of external and
ground structures more e	cient�

evaluation

The main advantage of the described binding scheme is that a worker can move
freely in the con�guration since it does not need to update any private infor�
mation� This allows for fast task switching� The explicit representation of the
constraint stores also makes bindings immediately visible to all workers� all
workers have a consistent view of the bindings in the con�guration�

A disadvantage is the non�constant time operations� to access or to add a
new binding can in the worst case be a very costly operation� In practice it does
not cause any problem� The majority of variable accesses are made to local
variables� in which case the binding is found in place� or to variables that are
local to the parent and�box� in which case only one binding list is examined�

To evaluate the binding scheme statistics were gathered from �ve programs�
The programs were executed in a prototype implementation running with one
worker� The programs are�

compiler The compiler compiling itself �about ���� lines of AKL code�� The
program uses concurrency and deep guards� The deep guards are used for
convenience� the program could be rewritten with only
at guards�

waves Waves in a torus �� generations� dimension ��� a
at program �originally
written in Strand by Ian Foster� translated to KL� by Evan Tick��

life The game of life ��� generations in a �� times �� toroid�� a
at program
written in AKL� Each cell is implemented as a process that depends on
all its eight neighbours�

��

Program local one level two levels
compiler ��� �� ��
waves ��� ��� ��
life ��� ��� ��
scanner ��� ��� ��
knights ��� ��� ��

Figure �� local vs� external bindings

program one level two levels
compiler ����
waves ����
life ����
scanner ���� ��
knights ��� ��

Figure �� access to external variables

scanner Find a pattern in a grid given x�ray information from rows� columns
and diagonals� A program that uses both concurrency and non�deter�
minism�

knights The knights tour ��rst solution on an � times � board�� a program
that uses both concurrency and non�determinism� It is the only program
that uses more than three levels of and�boxes�

The programs can be divided into three categories� The compiler is a real
life program i�e� not only written for benchmark purposes� The waves and
life programs are both
at committed choice programs� and are interesting in
that neither can be executed depth��rst without any suspensions� Almost all of
the traditional benchmarks for
at committed choice languages can be executed
depth��rst without any suspensions� Such programs� although they represent
a big group� were not included since a single worker execution will not use
any deep bindings� The scanner and knights are programs that utilise both
concurrency and non�determinism� AKL�s crowning glory�

Figure � shows the percentage of local and external bindings made� As is
clearly seen the majority of bindings are made to local variables� The external
bindings are almost always made to variables that belong to a parent and�box�
Bindings that span two levels are rare�

Once an external binding has been made it can of course be accessed many
times� If it is accessed in the same and�box in which the binding is made only

��

program � � � � � �
compiler ��� ��� ����
waves ��� ����
life ��� ��� ��� ��� ��� ���
scanner ��� ��� ��� ��� ��� ���
knights ��� ��� ��� ��� ���� ����

Figure �� accumulating percentage of the number of elements traversed in each
binding list

one binding list is searched� only if the access is even further down the tree need
more than one binding list be traversed� Figure � shows how many levels have
to be searched before a binding is found or the home and�box is reached� As is
clearly seen almost all accesses to external variables only traverse one binding
list�

One may also wonder if a list of bindings is e	cient enough and if it would
not be more e	cient to use a hash table� In Figure � the number of elements
traversed in each binding list for each variable access is shown� The number of
elements is as one can see very small� The need for a more e	cient representation
is not imminent�

The use of the environment identi�er to determine if a variable is local
or external is another possible hazard� To dereference the environment is a
non�constant time operation but it turns out that this is a very infrequent
operation� In the tests described above only two thousand� out of two and a
half million �� ������ environments had to be dereferenced� in all other cases
the environment identi�er pointed directly to a non�promoted and�box�

related work

Gopal Gupta and Bharat Jayarama ��
 describe criteria for or�parallel execu�
tion models of logic programs� Comparing the proposed scheme with or�parallel
models is however not straightforward� The implementation of choice split�
ting sacri�ces constant�time task creation whereas the binding scheme sacri�ces
constant�time variable access� The criterion in the development of the scheme
has been that local variable access should be a constant�time operation� In order
to achieve this� constant�time choice splitting or constant�time task switching
had to be sacri�ced� A copying strategy for choice splitting was chosen since it
simpli�es the binding scheme�

Binding schemes for Concurrent Prolog have� as in AKL� to deal with mul�
tiple levels of bindings and suspension of goals� The �deep scheme� proposed
by Sato� H� et al� ��
 is very similar to the binding scheme we present� That
scheme also uses a hierarchy of binding lists that have to be searched for each

��

access of an external variable�
The ParAKL implementation of AKL ���
 uses a binding scheme based on

the PEPSys hashing scheme� A hierarchical structure of hash tables is used
to represent the constraint stores� The hierarchical structure re
ects how work
has been spawned and not the structure of the con�guration� If two workers
are executing in the same and�box the last spawned will record its bindings in
a private hash window� Research is being done on compile time analysis for
stability detection ���
�

The sequential prototype implementation of AKL ���
 uses a trailing scheme
to implement the constraint stores� All bindings are made in place but external
bindings are trailed� The implementation uses only a dirty bit to detect stable
and�boxes with the consequence that once an and�box has become unstable it
will be marked as unstable even if it later becomes stable�

Andreas Podelski and Peter van Roy have presented ���
 an algorithm called
�the beauty and beast� for tests of entailment and disentailment� It is an
algorithm that avoids the O�n�� complexity �in the number of constraints� that
is inherent in the scheme presented in this paper� The beauty and beast has
not been implemented for a deep language and does not address the question of
stability�

� The Execution State

One way of implementing a concurrent language is to use goal stacking ��� �

i�e� immediately create representations of the goals in a promoted body� The
approach has several advantages in that it provides a uniform execution model
and fast task creation� One disadvantage is however that unnecesssary work is
performed if a goal fails� This is of course not a problem in a
at committed
choice language where failure is treated as an exception but can be a problem in
a deep language where failure of goals is a normal behaviour� Another problem is
that a conjunction of goals �that presumably interact� is divided and distributed
among workers�

In WAM ���
 the �environment� is used to represent the remaining goals in a
body� It is also used in and�parallel implementations of Prolog such as ��Prolog
��
 and DDSWAM ���
� The method has proved very e	cient in the sequential
implementations of AKL ���
 and we believe that it has additional advantages
in a parallel implementation� Apart from the advantages of lazy creation of
goals it can keep the granularity of work more coarse�

goals

The sequence of goals in the guard is represented by a single linked list of
insertion points� Each insertion point is either dead� referring to a choice�box or

��

and-continuation

choice-box

the initial state after first call after the guard instruction

after a proceed instructionafter promotion

body body

and-box

dead dead dead

dead

Figure �� the execution of a guard

an and�continuation� To facilitate insertion the cells are linked right to left i�e�
the leftmost goal in the guard is the last goal in the list�

An and�continuation contains the permanent registers� a code pointer and
the insertion point of the continuation� The instructions of an and�continuation
can be divided into three sections� instructions to create the goals of the guard�
a guard instruction and instructions to create the goals of the body� An and�
continuation is used to represent both untried goals in a guard and the body of
an and�box�

insertion and promotion

When an and�box is �rst created� an and�continuation is created that represents
both the guard and the body� When a goal is spawned from the and�continuation
a new insertion point is inserted in the list and used for the created choice�box�
When all goals of the guard have been spawned the guard instruction will be
executed� The guard instruction will� if a promotion is not allowed� make the
and�continuation the body of the and�box� The three �rst pictures in Figure
� show the initial state of a guard execution� the state after the �rst and only
goal has been spawned and the state after the guard instruction of the and�
continuation has been executed�

When an and�box is promoted the body will inherit the insertion point of the
parent choice�box� The last instruction of the body will mark the insertion point
as dead �proceed instruction� or reuse it for the last goal �execute instruction��
The last two pictures in Figure � show the state when the goal has been solved

��

and the and�continuation has been promoted� and the state after the execution
of the proceed instruction of the promoted and�continuation�

This scheme allows the sequence of choice�boxes and and�continuations to
be maintained without locking operations� The scheduling of available work
guarantees that only one worker at a time has a reference to an and�continuation�
The worker may manipulate it and its insertion point without any interference
from other workers�

A disadvantage of the scheme is that the list of insertion points will contain
dead entries� The list is� however� only traversed when all goals have been
executed and it is to be decided whether the guard is solved or not� This
operation is performed by the last worker to leave the and�box� Dead entries
can be removed at any point in the execution� during execution or by garbage
collection�

guards

A choice�box contains a reference to the insertion point of the choice�box� a
choice�continuation and a single linked list of and�boxes� A choice�continuation
represents untried guards and contains a code pointer and a copy of the ar�
gument registers� The and�boxes are� like the insertion cells� linked right to
left�

The operation on the list of and�boxes is di�erent from the operations on
the list of goals� A worker must be able to remove �by pruning or failure� any
and�box� which will require some locking� A fast insertion operation� provided
in the list of goals� is not essential since new and�boxes are only created from a
single choice�continuation and in the choice�split operation� both operations are
infrequent� A lock in the choice�box will control all modi�cations on the list of
and�boxes and the choice�continuation�

removing an and�box

When an and�box is removed� either by pruning� promotion or failure� workers
must be prevented from entering the and�box and workers that are already in
the and�box must be noti�ed� To solve this each and�box keeps a bit vector that
identi�es workers in the subtree of the and�box� The bit vector is protected by
a lock which must be taken before a worker is allowed to enter or leave the
and�box� The worker also keeps a
ag that indicates if the and�box is alive or
dead�

When an and�box is removed the lock of the parent choice�box is taken� If
the current and�box is still marked as alive �the and�box may have been pruned
by another worker� the lock of the and�box that should be removed is taken� The
locked and�box is marked as dead� the workers inside the and�box are signaled
and the lock is released� The and�box can now be removed from the list of
and�boxes� Finally the lock of the choice�box is released�

��

Any worker that enters the and�box will wait for the lock� and when the
lock is taken the worker will detect that the and�box is dead and continue the
execution elsewhere�

� Scheduling

A worker will be driven by tasks� The worker will have a set of tasks for each
level in the con�guration� All tasks at a given level have to be handled before
the worker is allowed to move up one level�

and�box tasks

There are two types of tasks associated with an and�box� wake and a�cont�
Wake tasks are created when constrained variables are bound� Each suspended
and�box will generate a wake task� The wake task contains a reference to the
and�box and a reference to the entry that is to be re�examined� The a�cont
tasks are created when a goal is called and when a body is promoted�

A worker that is executing the instructions of an and�continuation will when
the call is made add an a�cont task to its stack and continue the execution of the
called goal� Notice that this is the only task that refers to the and�continuation�
Any worker that has this task can execute the remaining instructions without
any locking operations� When a body is promoted the worker adds an a�cont
task for the promoted and�continuation�

The last worker to leave the and�box will examine the and�box and� if al�
lowed� promote the body of the and�box or prune sibling and�boxes�

choice�box tasks

There are three types of tasks associated with a choice�box� c�cont� promote and
split� A c�cont task is created by a worker when there is more than one guard
to explore� The c�cont task only indicates that a choice�continuation may exist�
since it may have been removed by another worker in a pruning operation�

To understand how the promote and split tasks are created the choice split
step must be understood� After the and�box has been copied the worker is
positioned in the choice�box immediately above the and�box� The worker will
move down to the new copy and perform a promotion of the copy of the candi�
date� There might however be things left in the original and�box� The original
and�box might be stable� and be eligible for another choice�split operation� or
contain a promotable and�box� since the candidate and�box has been removed�
In either case �both are simple to detect� the worker must sooner or later re�
turn to the and�box� A split or promote task is added before the worker moves
down in the copy� These tasks will be handled when the worker returns to the
choice�box�

��

W0 W1

a-cont

a-cont

a-cont

a-cont

a-cont

a-cont
wake

c-cont

promote

choice-box with choice-continuation

choice-box without choice-continuation

task stack of worker 1task stack of worker 0

level boundry

W0

and-continuation

and-box

position of worker

Figure �� the stack of tasks for two workers

task stacks

The tasks are represented as references to structures in the con�guration and
can be stored in a stack private to the worker� Figure � shows a con�guration
with two workers� The con�guration is shown schematically� the exact linking
of the structures is not shown� Worker ��� has an a�cont task in its current and�
box� a c�cont task in the parent choice�box and two a�cont tasks and a wake
task in the uppermost and�box� Worker ��� has an a�cont task in its current
and�box� a promote task in its parent choice�box and two a�cont tasks in the
uppermost and�box�

The tasks are divided into segments� where each segment is associated with
an and�box or choice�box in the current branch� The segments can be identi�ed
either from an extra stack or by inserting sentinels in the stack�

task distribution

All structures in the con�guration are allocated in shared memory� so a task
can be distributed simply by copying the task from the giving worker to the
receiving worker� The tasks can be distributed among workers to dynamically
balance the load� There is no distinction between and�box tasks and choice�box
tasks� all tasks can be scheduled and distributed uniformly�

A worker will execute its own tasks until it reaches the root of the con�gu�
ration and all tasks have been handled� It will then try to �nd another worker

��

with extra work and signal it to get some tasks� A worker can examine the
stacks of other workers before it chooses which worker to interrupt� There are
several approaches to how to select a worker�

� Interrupt the worker with a task as high up as possible�

� Interrupt the worker with the greatest number of tasks� take some of them�

� Prefer an a�cont task to a wake task�

The possibilities are many since the tasks are uniform and easily distributed�
Any number of tasks can be taken� from one or several levels� It is also possible
to stop at each level in the con�guration to get more tasks from workers in the
same branch�

� Summary

We have described the fundamental components of a parallel implementation of
AKL that allows both and� and or�parallel execution�

binding scheme

The problem of maintainingmultiple environments is solved by two mechanisms�
explicit copying to solve non�determinism and a binding scheme to deal with
the hierarchy of constraint stores�

The explicit copying of the execution state causes a big overhead for non�
deterministic programming� This approach was chosen in spite of the overhead
since it does not impair deterministic executions� Non�determinism is a powerful
programming concept� the price is paid only when it is used�

Two approaches exist when constructing the binding scheme for deep gu�
ards� One is to sacri�ce constant�time variable access� the other is to sacri�ce
constant�time task switching� We have chosen to sacri�ce constant�time vari�
able access not because the constant�time task switching is more important but
because the non�constant factor in variable accesses is controllable� All accesses
to local variables are constant�time operations �modulo lock operation�� and
the nonconstant�time factor only appears when external variables are accessed�
External variables are not introduced by the execution model but by the pro�
grammer� Again� when using a powerful concept you pay a price�

We have shown that external bindings are infrequent and when used in
most cases only span one level� The evaluation was conducted by executing
programs that we think� in this respect� represent the majority of programs�
The evaluation supports the feasibility of the binding scheme�

The implementation is novel in that it keeps perfect track of stability� an
issue that has been neglected in other designs� The information for stability de�
tection is implicit in the binding scheme� no extra constructs or operations are

��

introduced� The stability information is essential in any implementation� one
can not rely on the stability of the whole con�guration� A parallel implementa�
tion would furthermore be impaired if stability detection is neglected since the
choice splitting operations will be sequentialized�

execution state

The question of how the execution state should be represented and manipulated
is not as critical as the binding scheme� The operations on the execution state
are not as frequent as the operations on terms� The only critical part is the
management of goals� new goals are constantly created and solved goals are
removed� and these operations must be performed as e	ciently as possible�

The goals in a guard are represented in a way that allows them to be inserted
and removed without any locking� This is very important since this is the most
frequent operation in the execution state�

Continuations are used to represent sequences of untried goals� The represen�
tation keeps the granularity of work more coarse� It will also avoid unnecessary
work if a goal fails before all the goals have been spawned�

task distribution

A worker will be driven by tasks� The tasks are represented as references to
structures in the con�guration and can be stored in a stack private to the worker�
All structures in the con�guration are allocated in shared memory� so a task can
be distributed simply by copying the task from the giving worker to the receiving
worker�

The tasks can be distributed among workers to dynamically balance the
load� There is no distinction between and� and or�parallel tasks� all tasks can
be scheduled and distributed uniformly� This means that there is no need to
separate an and�scheduler from an or�scheduler �as in ��
�� one scheduler will
handle all tasks in the system� This opens new possibilities for load balancing�

further investigation

A prototype implementation is under development and the preliminary results
show that the binding scheme works well with little overhead compared to the
sequential implementation�

The task distribution is only partly implemented� To experiment with dif�
ferent scheduling algorithms a graphical tool is being developed that will give a
visual presentation of the execution given log messages from a real execution�

��

� Acknowledgement

The research presented in this paper has been bene�ted from discussions with
Seif Haridi� Sverker Janson� Takashi Chikayama and Gert Smolka� all whom we
would like to thank� We would also like to thank Torkel Franz�en who has helped
us with the presentation�

The parallel implementation of AKL is developed as a part of the ACCLAIM
Esprit project� EP �����

References

��
 Khayri A� M� Ali� A parallel copying garbage collection scheme for shared�
memory multiprocessors� New Generation Computing� ������ August �����

��
 Vitor Santos Costa� David H� D� Warren� and Rong Yang� The Andorra�I
engine� A parallel implementation of the Basic Andorra model� Technical
note� University of Bristol� Department of Computer Science� March �����

��
 Jim Crammond� Implementation of committed choice logic languages on
shared memory multiprocessors� Phd thesis� Heriot�Watt University� �����

��
 Torkel Franz�en� Some formal aspects of AKL� SICS Research Report
R������ Swedish Institute of Computer Science� �����

��
 Gopal Gupta and Bharat Jayaraman� On criteria for Or�Parallel execution
models of logic programs� In Saumya Debray and Manuel Hermenegildo�
editors� Proceedings of the ���� North American Conference on Logic Pro�

gramming� pages ��� ���� Austin� ����� ALP� MIT Press�

��
 Sato H�� Ichiyoshi N�� Dasai T�� Miyazaki T�� and Takeuchi A� A sequential
implementation of concurrent prolog � based on the deep binding scheme�
In The First National Conference of Japan Society for Software Science

and Technology� pages ��� ���� ����� In Japanese�

��
 M� V� Hermenegildo and K� J� Greene� ��Prolog and its performance�
Exploiting independent And�Parallelism� In David H� D� Warren and P�eter
Szeredi� editors� Proceedings of the Seventh International Conference on

Logic Programming� pages ��� ���� Jerusalem� ����� The MIT Press�

��
 de Catro Duatra Ines� Strategies for scheduling and� and or� work in parallel
logic programming systems� In Maurice Bruynooghe� editor� Proceedings of
the ���� International Logic Programming Symposium� Ithaca� ����� ALP�
MIT Press�

��

��
 Sverker Janson and Seif Haridi� Programming paradigms of the Andorra
kernel language� In Vijay Saraswat and Kazunori Ueda� editors� Logic Pro�
gramming� Proceedings of the ���� International Symposium� pages ���
���� San Diego� USA� ����� The MIT Press�

���
 Sverker Janson and Johan Montelius� The design of the AKL!PS ��� proto�
type implementation of the Andorra Kernel Language� ESPRIT deliverable�
EP ���� �PEPMA�� Swedish Institute of Computer Science� �����

���
 T� Miyazaki� A� Takeuchi� and T� Chikayama� A sequential implementation
of concurrent Prolog based on the shallow binding scheme� In Symposium

on Logic Programming� pages ��� ���� IEEE Computer Society� Technical
Committee on Computer Languages� The Computer Society Press� July
�����

���
 Remco Moolenaar and Bart Demoen� Full parallel search in AKL� Submit�
ted for publication�

���
 A� Podelski and P� Van Roy� The beauty and beast algorithm� Quasi�linear
incremental tests of entailment and disentailment over trees� In Maurice
Bruynooghe� editor� Proceedings of the ���� International Logic Program�

ming Symposium� pages ��� ���� Ithaca� ����� ALP� MIT Press�

���
 B� Demoen R� Moolenaar� A parallel implementation for akl� In Lecture

Notes in Computer Science� ���� pages ��� ���� Springer�Verlag� August
�����

���
 Kish Shen� Implementing dynamic dependent And�Parallelism� In David S�
Warren� editor� Proceedings of the Tenth International Conference on Logic

Programming� pages ��� ���� Budapest� Hungary� ����� The MIT Press�

���
 D� H� D� Warren� An abstract prolog instruction set� Technical Report
���� SRI International� �����

��

