
The Penny Abstract Machine�

an overview

Johan Montelius

jm�sics�se

Haruyasu Ueda

hal�sics�se

Abstract

The Agents Kernel Language �AKL� is a general purpose concurrent
constraint language� It combines the programming paradigms of search�
oriented languages such as Prolog and process�oriented languages such as
GHC�

This paper gives an overview of the parallel implementation developed
at SICS� The paper is focused on how the execution state is represented
and how tasks are scheduled� A design is presented that induces very little
overhead for locking operations� allows explicit deallocation of structures
and provides a �exible task scheduler� The paper includes a preliminary
evaluation of the system�

� Introduction

The Agents Kernel Language �AKL� ��� is a general purpose concurrent con�
straint language� It combines the programming paradigms of search�oriented
languages such as Prolog and process�oriented languages such as GHC�

This paper presents the design of a parallel implementation developed at
SICS� The implementation utilises both and�parallelism and or�parallelism� In
a parallel implementation several problems have to be solved� how to handle the
multiple binding environments	 how to represent and manipulate the execution
state	 how to distribute available work and how to manage storage and perform
garbage collection�

The binding scheme has been presented in �
�� The algorithm of the garbage
collector of dynamic structures is presented in ��� and its parallel implementation
is presented in ���� This paper describes how the execution state is represented
and how tasks are scheduled�

Section � gives an overview of the computation model of AKL� An intro�
duction to the computation model of AKL can be found in �
�� For a formal
treatment	 see ���� Section � gives an overview of the abstract machine for the
parallel implementation� Section � gives some implementation details of the
representation of the execution state� Section � is a description of how task are

�



scheduled� Section 
 gives an evaluation of the implementation� Section � is a
summary of the paper�

� The Computation Model

The AKL computation model is de�ned as a set of transformations of an exe�
cution state called the con�guration� The operations on the con�guration are
de�ned by a set of rewrite rules� There are four determinate rewrite rules �try	
pruning	 promotion and failure� and one non�determinate rewrite rule �choice
splitting�� We will �rst describe the structure of a program	 then the structure
of a con�guration and the rewrite rules� Finally we will explain how a worker
performs the operations on a con�guration�

��� a program

An AKL program is a set of predicate de�nitions� Each predicate is de�ned by a
set of guarded clauses consisting of a head	 a guard	 a guard operator and a body�
The head is a program atom	 the guard and body contain program atoms and
constraint atoms� There are three types of guard operators� conditional	 commit
and wait� All clauses of a de�nition have the same type of guard operator�

��� the con�guration

A goal is either a program atom	 a constraint atom or a choice�box� A choice�box
represents the execution of a program atom and contains a sequence of guarded
goals� Each guarded goal represents a guarded clause and consist of a guard	
a guard operator and a body� The guard is represented by an and�box� An
and�box contains a sequence of goals	 a set of constraints and a set of variables�
The body is represented by a sequence of atoms� The root of the con�guration
is an and�box� We will in this paper informally refer to the children	 siblings
and parents of boxes�

A variable is local to an and�box	 referred to as the home of the variable�
Variables that have their home in the path from the root to the and�box are
external to the and�box� The sets of constraints in the con�guration form a
hierarchy of constraint stores� A constraint on a local variable is called an
unconditional constraint of the variable� A constraint on an external variable
is called a conditional constraint� Constraints are only visible in the subtree
formed by the and�box in which the constraint resides�

An and�box is solved if the sequence of goals is empty� An and�box is quiet if
all constraints on external variables are entailed by the constraint stores above
the and�box� Since a guard is represented by an and�box we will also speak
about solved and quiet guards and guarded goals� A solved and�box and���V
can be written as �V �

�



hand�box i ��� and�hsequence of goalsi�
hset of constraintsi
hset of variablesi

hchoice�box i ��� choice�hsequence of guarded goalsi�

hguarded goal i ��� hguard ihguard operatorihbody i

hguard i ��� hand�box i

hgoal i ��� hchoice�box i j hatomi

hbodyi ��� hsequence of atomsi

hatomi ��� hprogram atomi j hconstraint atomi

hguard operatori ��� � j � j� j � �conditional	 commit	 wait�

Figure �� Con�guration

An and�box is stable if no determinate operation can be performed in the
subtree formed by the and�box even if a satis�able constraint on an external
variable is added to the con�guration� The notion of stability is central to the
idea of combining search and concurrency�

��� rewrite rules

The rewrite rules are described as transformations of a component in a con�g�
uration� The letters R and S denote sequences of goals	 A denotes an atom	 B
denotes a sequence of atoms	 G denotes an and�box	 E and F denote sequences
of guarded goals	 U and V denote sets of variables and � and � denote sets of
constraints� The symbol � will be used instead of a guard operator�

try

A program atom is tried by replacing it by a choice�box with one guarded goal
for each clause in the de�nition� Each guarded goal will have a guard	 a guard
operator and a body that correspond to the a guarded clause in the de�nition�
The guard will have a set of local variables and a set of constraints that uni�es
the arguments of the program atom with the arguments of the head of the
clause�

and�R�A� S��V � and�R� choice�G�
U�B� � � ��� S�

�
V

A constraint atom is tried by removing the atom and adding the corresponding
constraint	 let it be c	 to the set of constraints�

and�R�A� S��V � and�R�S�
��fcg
V

�



pruning

A guarded goal that is solved and quiet may	 depending on the guard operator	
prune its siblings whereby the pruned guarded goals are removed from the con�
�guration� The wait guard operator does not allow pruning� The commit guard
operator allows pruning in both directions� The conditional guard operator only
allows pruning of the siblings to the right�

choice�E� �V j B�F �� choice��V j B�
choice�E� �V � B�F �� choice�E� �V � B�

promotion

If a choice�box has a single solved guarded goal as its only child the guarded
goal may	 depending on the guard operator	 be promoted� A guarded goal is
promoted by replacing the parent choice�box with the body of the guarded goal
and adding the constraints and variables of the guard to the parent and�box�
The commit and conditional guard operators require that the guard is quiet�
The wait guard operator does not place any extra requirements on the operation�

and�R� choice��V�B�� S��U � and�R�B� S����U�V

failure

A choice�box with no guarded goals is removed and the false constraint is added
to the constraint store of the and�box�

and�R� choice��� S��V � and�R�S�
��f�g
V

If the set of constraints of an and�box is dis�entailed	 by the constraint stores
above the and�box	 it fails� A guarded goal containing a failed guard is removed
from the con�guration�

choice�E�G
��f�g
V �B�F �� choice�E�F �

choice splitting

A candidate is a solved guarded goal with a wait guard operator� If an and�box
is stable and the subtree formed by the and�box contains a candidate	 a choice
splitting operation can be performed�

choice�E�� and�R� choice��V �B�F �� S��U � E���

choice�E�� and�R� choice��V �B�� S��U � and�R� choice�F �� S��U � E��

The choice splitting rule will duplicate work �R and S�	 something that must be
avoided until all other possibilities have been tried� The stability requirement
prevents the split operation until it is known that no determinate operation can
be performed in the and�box�

�



and-node

and-continuation choice-node and-continuation

main and-node

root

Figure �� an execution state

� The Abstract Machine

The execution state is a representation of the con�guration� A worker is a
process that performs the transformations on the execution state� The abstract
machine is designed to allow multiple workers to collaborate in an execution
state�

��� The execution state

The execution state is a tree of choice�nodes	 and�nodes and and�continuations�
The root of the tree is a dummy choice�node that serves only as a sentinel in
the execution� The root node holds a single and�node that is referred to as the
main and�node� Figure � shows a schematic execution state�

The description given in this section is as much as possible free of imple�
mentation dependent details� Implementation details will be described in the
following sections�

and�node

An and�node is the representation of a guarded goal� It contains� a list of
choice�nodes and and�continuations that represents the sequence of goals in the
guard	 an and�continuation that represents the body	 a reference to its parent
choice�node	 a type	 the identi�ers of all workers installed in the and�node	 a
lock	 a forward pointer and a set of entries� The type of the and�node is used
to represent the guard operator of the guarded goal but it is also	 as will be

�



shown in section �����	 used for other purposes� The forward pointer is used if
the body of the and�node is promoted�

Entries are mainly used for representing constraints on external variables
but are also used to keep track of suspended computations� An entry is either a
uni�er entry	 a suspension entry	 continuation entry or a dead entry� All entries
hold a reference to the and�node to which they belong� A uni�er entry holds a
reference to a variable and a term which the variable is constrained to be equal
to� A suspension entry holds a reference to a variable and a set of suspensions�
A continuation entry holds only a possibly empty set of suspensions�

Suspensions are referenced both from suspension entries	 continuation entries
and constrained variables� A suspension carries a reference to either an and�
continuation	 a choice�node or an entry� We will in this paper not describe in
full how the binding scheme is designed nor how suspensions are handled�

and�continuation

An and�continuation represents a sequence of program atoms� The �rst and�
continuation allocated in an and�node holds the representation of the guard and
body of the guarded goal� An and�continuation is similar in its structure and
use to an �environment� in WAM ����� It holds a continuation program pointer
and a tuple of registers�

choice�node

A choice�node represents a choice�box� It contains a list of and�nodes and a
choice�continuation� A choice continuation represents a sequence of guarded
goals and is similar to a �choice�point� in WAM� It holds a program pointer
and a copy of the argument registers�

��� The worker

Aworker is either active and �positioned� in an and�node in the con�guration	 or
idle� The node in which the worker is positioned is called the current and�node�
We will also refer to the current choice�node and the current and�continuation�

To install itself in an and�node a worker must add its identi�er to the set
of identi�ers held by the and�node� The set of identi�ers allows a worker to
determine if it is alone in an and�box� It is also possible to determine exactly
which workers are installed in an and�node	 a possibility that can be utilised by
the garbage collector� When the worker is de�installed from the and�node the
identi�er is removed�

The worker is driven by a set of tasks	 where each task is associated with an
and�node in the con�guration� The worker must handle all tasks in the current
and�node before it is allowed to move up to the parent choice�node� During the






split handler

guard handler

task handler

choice handler

fail handler

instruction handler

scheduler

Figure �� the abstract machine states

execution of a task new tasks can be generate� All new tasks will be associated
with nodes in the subtree formed by the current and�node�

By ensuring that a worker always performs all tasks in a box before it can
move up	 half of the problem of detecting stability have been solved� If a worker
is about to leave an and�box we know that all determinate operations within
the and�box have been performed� The remaining problem is to determine if a
constraint added above the and�box can make a determinate operation possible�

��� The states

During execution a worker moves between di�erent handlers as illustrated in
Fig �� The handlers are� instruction handler	 task handler	 fail handler	 choice
handler	 guard handler and the scheduler�

The instruction handler is the core of the abstract machine and can together
with the fail handler and choice handler be seen as the WAM part of the ab�
stract machine� Notice that the instruction handler is only one part in the
abstract machine	 a part important to implement as e�ciently as possible using
compilation techniques as well as implementation techniques� Our work is how�
ever focused	 not on the instruction handler	 but on the implementation of and
interaction between the other handlers since these are unique to our system�

�



����� instruction handler

The instruction handler is responsible for calls	 selection of guarded goals	 build�
ing of data structures and open code uni�cation� The instructions for data ma�
nipulation are	 apart from variable bindings	 very similar to the instructions in
the WAM� We will not in this paper describe all these instructions	 but only de�
scribe the instructions that are important for the understanding of the execution
model�

A de�nition consist of decision code that is terminated either by� a suspend
instruction	 a single instruction	 a sequence of try�retry�trust instructions	 a fail
instruction or the code of a body� The single instruction and try�retry�trust
instructions determine which guarded goals should be executed�

The code of a guarded goal consists of an allocate instruction	 a sequence
of call instructions	 a guard instruction followed by either a sequence of call
instructions and a deallocate�execute instruction or a deallocate�proceed instruc�
tion� Below is an outline of the code for a de�nition where the instructions are
shown without their arguments�

�

jump L�

L� try G�

�

G� allocate

�

call

�

guard

�

call

�

deallocate�execute

If the decision code can determine that the guard is solved	 the body can
be directly promoted� Only the body of the guarded goal is coded resulting
in either an allocate instruction	 a sequence of call instructions followed by a
deallocate�execute instruction or	 if there is only one goal in the body	 a single
execute instruction or	 if there are no goals in the body	 a proceed instruction�
Below is an outline of a de�nition with a directly promoted body�

�

jump L�

�



L� allocate

�

call

�

deallocate�execute

Notice that an allocate instruction always is present before a guard instruc�
tion in the code of a guarded goal and always in the code of a body if there
are more than one call instruction in the body� This is di�erent from how the
allocate instruction is issued in the WAM ���� where an allocate instruction is
issued only if �permanent� variables are present�

The instruction decoding phase needs a reference to an insertion point� The
insertion point is a location between two elements in the sequence of goals	
and is necessary in order to keep the sequence ordered� The most important
instructions without their arguments�

call�execute�deallocate�execute� A call instruction initiates the call of a
program atom� The continuation program pointer of the current and�
continuation is updated and the insertion point is set to the left of the
current and�continuation� A continuation task is added for the and�
continuation and the worker starts decoding the instructions from the
de�nition�

The deallocate�execute instruction is used for the last call in a body� It
removes the and�continuation and sets the insertion point to the position
of the removed and�continuation� An execute instruction is used for a
directly promoted single goal body and does not change the insertion
point�

single� try�retry�trust� The single instruction creates a choice�node with
a single and�node and inserts it at the insertion point� The and�node is
the current and�node and the insertion point is the �rst position in the
�empty� sequence of goals�

The try	 retry and trust instructions are used when more than one guarded
goal is applicable� The try instruction creates	 apart from a choice�node
and an and�node	 a choice�continuation where it saves the argument regis�
ters and a continuation program pointer� The retry instruction will update
the continuation program pointer and the trust instruction will remove the
choice�continuation�

fail� The fail instruction is used when no applicable guarded goal is found�
The worker will enter the fail handler�

suspend� The suspend instruction is used if the decision code can detect an
immediate suspension� A choice�node with a choice�continuation is created
and inserted at the current insertion point� The argument registers are






saved and the continuation program pointer is set to the �rst instruction
in the decision code� A suspension is added to the variable �only one� on
which the goals is suspended and the worker then enters the task handler�

allocate� An and�continuation is created and inserted at the insertion point�
Note that the and�continuation can be the �rst instruction of a guarded
goal or the �rst instruction in a body that has been directly promoted�
The and�continuation becomes the current and�continuation�

guard� The guard instruction terminates the instructions that belong to the
guard� The continuation program pointer in the current and�continuation
is updated and the and�continuation is inserted as the body of the current
and�node� The worker then enters the guard handler�

deallocate�proceed�proceed� The deallocate�proceed instruction is used as
the last instruction of a body without any goals	 where an and�contin�
uation was allocated in the guard� The instruction removes the current
and�continuation and the worker enters to the task handler� The proceed
instruction is the last instruction in an empty body that has been directly
promoted� The worker enters the task�handler�

During uni�cation of an external variable	 a suspension for an uni�er entry
is created and added to the variable� Variables can therefore have suspensions
referring to entries or suspended choice�nodes� During uni�cation the suspen�
sions will generates wake and recall task that are added to the set of tasks for
the current and�node� If a uni�cation fails the worker will enter the fail handler�

����� task handler

The tasks are the primitive operators for the concurrent computation� There are
three kinds of tasks� continue	 recall and wake� Continue tasks are generated by
the call instruction	 wake and recall tasks are generated when a variable with
suspensions is bound� Each task is associated with the and�node in which the
task is generated�

A worker will examine the tasks associated with the current and�node and
select one of them� If no more tasks exist for the and�node the worker will enter
the guard�handler� The di�erent tasks are�

continue� The continue task refers to an and�continuation in the current and�
node which is made the current and�continuation� The worker will enter
the instruction handler starting with the instruction pointed to by the
continuation program pointer of the and�continuation�

recall� A recall task refers to a choice�node that has been created by a suspend
instruction� The choice�node is removed and the saved registers are copied
to the argument registers� The worker enters instruction decoding starting

��



with the instruction pointed to by the continuation program pointer� The
insertion point is the position of the removed choice�node�

wake� A wake task refers to an entry of an and�node immediately below the
current and�node �or rather below a choice�node below the current and�
node�� The worker must install itself in the and�node	 remove and examine
the entry� The entry can	 as said before	 be of four di�erent kinds� uni�er	
suspension	 continuation or dead�

A uni�er entry is retried by unifying the �now bound� variable and the
term� If the uni�cation fails	 the worker moves to the fail handler	 if it
succeeds the entry is marked as dead and the worker will continue in the
task handler�

For both suspension entries and continuation entries	 the set of suspensions
are transformed to tasks and the entries are marked as dead� A dead entry
can be ignored since it has already has been taken care of� Execution will
proceeds in the task handler�

����� guard handler

The worker enters the guard handler after all tasks associated with the and�
node are processed� When the worker �rst enters the guard handler it locks
the parent choice�node and current and�node �in this order�� The worker then
determines if it is alone in the current and�node� If it is not alone it will	 if the
current and�node is the main and�node	 move to the scheduler state� If it is not
the main and�node the worker will de�install itself from the and�node	 release
the lock of the node and move to the choice handler� Notice that the lock of
the choice�node is still held�

If the worker is alone in the and�node it will examine the type of the and�
node� The type can be either� failed	 pruned	 main or a guard operator�

failed� A failed type means that another worker has failed the and�box but has
left to the last worker to clean up� The worker moves to the fail handler�

pruned� A pruned type means that another worker has pruned the and�node	
the worker will move up to the parent choice�node and enter the choice
handler�

main� If this and�node is reached	 there is nothing more to do and the worker
enters the scheduler state�

guard operator� If the type is a regular guard operator the worker tries to
perform a pruning or promotion operation� In a pruning operation the
choice�continuation of the parent choice�node is removed� Any pruned
sibling and�nodes are marked as pruned� A promotion operation replaces
the parent choice�node with the body of the current and�node	 the worker

��



then enters the instruction handler and starts with the �rst instruction in
the and�continuation�

If promotion is not allowed the worker must examine if a split operation
can be performed� If the and�node is stable and a candidate is found the
worker moves to the split handler� If a split operation is not possible	
the worker is done� It moves to the parent choice�node and enters the
choice�handler�

����	 choice handler

In the choice handler the worker looks for a choice�continuation� If a choice�
continuation exists	 the saved registers are copied back to the argument registers�
The worker then enters the instruction decoder starting with the instruction
pointed to by the continuation program pointer� If no choice�continuation exists	
the worker releases the lock of the choice�node	 moves to the parent and�node
and enters the task�handler�

����
 fail handler

The fail handler is entered from the instruction handler	 guard handler or task
handler� If the worker enters from the guard handler the locks are already taken	
if it enters from the instruction handler or task hander it must �rst take the
locks of the parent choice�node and current and�node �in this order�� Once the
lock of the current and�node is taken the workers determines if it is alone in the
and�node�

If the worker is not alone in it examines the type of the and�node� If the type
is either failed or pruned	 the worker simply de�installs itself from the and�node	
releases its lock	 moves to the parent choice�node and enters the choice�handler�
If the type is a proper guard operator	 the node is �rst marked as failed� If the
node is the main and�node	 the worker will de�install itself	 release the lock of
both the and�node and the choice�node and enter the scheduler�

If the worker is alone in the and�node and the and�node is pruned	 the worker
de�installs itself	 moves to the parent and�node and enters the task�handler� If
the and�node is already failed or the type is a regular guard operator the worker
will mark the and�node as failed	 remove it form the con�guration�

If the worker has removed the node it will check if the node represented
the last and�node of the parent choice�node� If this is the case the worker will
remove the parent choice node	 enter the parent and�node and again invoke the
fail handler� If only one sibling and�node exist this and�node could be promoted�
The worker will therefore adopt the node as the current and�node and proceed
in the task handler� If none of the special cases apply the worker will move up
to the choice�node and enter the choice handler�

��



����� split handler

When the worker enters the split handler	 it holds the lock of the current and�
node and parent choice node� The worker will �rst position itself in the parent
and�node of the candidate and�node	 called the mother�node �this might mean
that the worker will have to move down in the tree but the mother�node often
turns out to be identical with the current and�node�� It then ensures that the
mother node and its parent choice node are locked and then inserts a new locked
and�node	 called the copy�node	 to the left of the mother�node� Once the copy�
node is inserted	 the lock of the parent choice�node can be released to allow
other workers to make split operations in sibling nodes�

After having copied the contents of the mother�node into the copy�node	
the worker will release the locks of the mother node	 enter the copy of the
candidate	 release the lock of the copy node and move to the guard handler�
Before this is done	 it will however add continuation entries and tasks to make
sure that no deterministic computations are forgotten in the mother�node� If
the candidate had only one sibling and�node this node is deterministic and can	
if it is solved	 be promoted� To �nd this task	 an empty continuation entry
is added to the sibling node referenced by a continuation entry in the mother
node� If the candidate had more than one sibling but the mother�node is stable
an empty continuation entry is added to the mother�node� If an entry is added
to the mother�node a wake	 task for the entry is added to the set of tasks of the
mother�nodes parent and�node�

����� scheduler

The worker in this state has nothing to do� To perform parallel computation	
the scheduler will supply another task to do from another worker� Once a task
is found and assigned to a worker	 the worker enters the task handler� If all
workers are in scheduler state	 the whole process will stop�

More detail will be given in section ��

� Implementation

In this section we will describe some of the implementation speci�c details of
the representation of nodes in the execution state� We will describe a scheme
that has few locking operations and allows nodes to be reclaimed explicitly�

We will use an atomic swap operation on a single word to implement locking
primitives� The locks will not hold simple locked�unlocked values but rather
hold values as for example locked�dead�pointer� All locks will be spin�locks	
i�e�	 a worker will swap the value of the lock until the lock is taken� This does of
course not guarantee progress of each worker but is not a limitation in practise�

��



Figure �� the representation of the sequence of goals

��� goals

The sequence of goals in the guard is represented by a single linked list of
insertion cells� Each insertion cell is tagged and is either dead	 pointing to
a choice�node or pointing to an and�continuation� The choice�nodes and and�
continuations also hold a pointer to the insertion cell� To facilitate insertion the
cells are linked right to left	 i�e�	 the leftmost goal in the guard is the last goal
in the list� Figure � shows the structure of a list of goals�

When a call instruction is executed a new cell is inserted after the insertion
cell of the current and�continuation� The new cell will be the new insertion
point� No locking is necessary since the worker is the only one that has access
to the and�continuation and hence is the only one that will insert a new cell�

When a body is promoted the and�continuation will inherit the insertion
cell of the parent choice�node� The last instruction of an and�continuation will
mark the insertion point as dead �deallocate�proceed� or reuse it for the last
goal �deallocate�execute instruction��

The advantage of the scheme is that no locking is necessary in order to keep
the list ordered� A disadvantage is that the list of insertion cells will grow and
contain dead entries� The list is	 however	 only traversed when all goals have
been executed and it is to be decided whether the guard is solved or not� This
operation is performed only by the last worker to leave the and�node� Dead
entries can be removed at any point in the execution	 during execution or by
garbage collection�

��� guards

The operations on the list of and�nodes is di�erent from the operations on the
list of goals� A worker must be able to remove �by pruning or failure� any and�
node and this will require some locking� A fast insertion operation	 provided
in the list of goals	 is not essential since new and�nodes are only created from

��



a single choice�continuation and in the split operation and both operations are
infrequent�

The and�nodes will be linked in the list starting with the rightmost and�
node� The lock in the choice�node will control all modi�cations on the list of
and�nodes and also of the choice�continuation� The list is linked from right to
left in order to facilitate the insertion of a new and�node in the retry and trust
instructions�

Although the insertion and removal of nodes in the list is not crucial	 we still
want to be able to explicitly reclaim a removed and�node� In order to do this we
must protect it from direct references from living data structures� An and�node
is referenced �apart from the list of nodes� from variables that are local to the
and�node and entries of the and�node� The entries of the and�node will not
survive if the and�node is removed but variables will survive if the and�node is
promoted� The variables of a promoted and�node is of course not interested in
the and�node itself but need the forward pointer to determine their new home�

To solve this problem we extract the forward pointer from the and�node in
a structure by its own� This structure will be referred to as the environment
identi�er �or envid for short� of the and�node� The envid contains a three value
lock and a forward pointer� The lock can take the values� and�node pointer	
locked or dead� The and�node pointer is a pointer to the and�node to which
the envid belongs� The forward �eld is either null or	 if the and�node has been
promoted	 a pointer to the envid of the parent and�node� It is possible to code
both the lock and the forward pointer in one word by tagging the di�erent
pointers�

When a worker installs itself in an and�node it must �rst take the lock in
the envid� It can then add its identi�er to the set of identi�ers and release the
lock� Only when the worker is installed in the and�node	 it is allowed to trust
the available information�

removing a node

If a worker wants to remove a failed and�node	 it has already taken the lock of
the parent choice�node and the lock of the and�node� The lock on the and�node
prevents any other worker from entering the node	 the lock of the choice�node
prevents any other worker from modifying the list of and�nodes	 i�e�	 prune the
node� The and�node can thus be removed from the list and reclaimed�

Similarly	 if a worker wants to prune sibling and�nodes it has already taken
the locks of the parent choice�node and current and�node� It will prune an and�
node by �rst taking the lock of the node	 mark it as pruned and if no other
worker is present	 remove and reclaim the node� Another worker might hold the
lock of the and�node to be pruned but it is then only held for entering or leaving
the node� Any worker that wants to fail or prune the and�node is waiting for
the lock of the parent choice�node	 the locking scheme is thus dead�lock free�

In a promotion operation	 the current and�node and its parent choice node

��



envid hanger

entryand-node

Figure �� the representation of an and�node

can safely be reclaimed	 no other worker will access the choice�node nor the
and�node before having taken the lock of the and�node�

sub�trees and entries

When an and�node is reclaimed the lock of the envid is set to dead� Other
workers that are waiting for the lock will detect the dead lock and proceed
with other tasks� The worker can then reclaim not only the and�node but also
all nodes below it in the execution state� The hierarchical structure of the
suspensions guarantees that no other worker will try to enter the sub�tree so
these operations can be done without any locking�

Entries of an and�node are also structures that we want to reclaim explicitly�
We protect each entry with a hanger	 which contains a pointer to the envid of
the and�node and a pointer to the entry� Figure � shows the representation of
an and�node with single entry� When a worker examines a wake task it will �rst
try to lock the envid pointer of the hanger� If the lock is already taken it will
ignore the entry� If the lock is seized the worker will try to take the lock of the
envid	 install itself in the and�node	 remove the entry from the list and unlock
the and�node�

��� reclaiming structures

We have described a scheme that allows a worker to explicitly reclaim nodes in
the execution state� By reclaiming nodes explicitly we will decrease the garbage
collection time and more importantly improve cache performance�

Choice�nodes	 and�nodes and entries have di�erent size but they all have a
�xed size and can thus easily be maintained in free�lists� And�continuations and
choice�continuations can have any size and if these are to be reclaimed we have
di�erent choices� One possibility is to break the continuations up into �xed size
segments� This has the drawback that it is harder to access the continuations
since the registers are not in consecutive order�

Access by instructions to the and�continuations is most important to imple�
ment e�ciently� Since all accesses by instructions are known at compile time the

�




compiler can be made aware of the segmented representation and issue special
instructions for the access that are not in the �rst segment� If these accesses are
infrequent the only drawback is that the number of instructions is increased�
This can be avoided by adding only two new instructions� one that will set
the and�continuation register pointer to the right segment and another that will
reset it� This will of course slow down the access to registers not in the �rst
segment even more	 but it could pay o� depending on the technique used in the
implementation of the instruction handler�

the size of a block

If all structures could use the same size blocks much would be gained� It is of
course easier to maintain one free�list but it will also improve cache performance�
For example	 if the memory used by a reclaimed and�node immediately can be
used for a constructed choice�node	 this memory segment will most certainly be
in the cache�

We will of course lose some space if we use the size of the largest structure
to represent even the smallest structure but this is not so important� The
important thing is to avoid false sharing� False sharing occurs in a shared
memory multiprocessor when two processors access di�erent data structures
that happens to be allocated in the same cache�line�

The size of a cache�line of the second level cache of the SPARCcenter�����
�our target machine�	 is 
� bytes� Choice�nodes	 and�nodes and entries all �t
into 
� bytes� If the continuations are broken up into 
� byte segments each
segment will hold a maximum of �� register� The �rst segments will hold even
less �choice�continuation ��	 and�continuation ��� since these segments also hold
other pointers� We have however found that this is not a serious limitation�

� Scheduling

The scheduler is invoked when a worker enters the scheduler state� The scheduler
serves two purposes� dynamic load balancing and the detection of termination�

��� Dynamic load balancing

As we mentioned in subsection �����	 the tasks are the primitive operations of
concurrent computation and can be computed in parallel� To balance the load
of the workers	 the scheduler supply one or more tasks to an idle worker which
is in scheduler state� The sources of the tasks are the local task stack and the
global task queue�

local task stack

Normally	 a task generated by a worker is pushed on the local task stack
owned by the worker� This operation does not need any locking operations

��



since the stack is private to the worker� The task handler will pop tasks
from the local task stack�

global task queue

The global task queue is utilized to save the tasks which are not owned by
any workers	 for example	 tasks generated by the operating system� The
global queue can also be used as a pool of tasks that could be given to
idle workers�

The use of the local task stack is similar to the use of task stacks in the
sequential implementation of AKL ����

To enable parallel computation	 tasks must be moved between stacks from
busy workers to idle workers	 directly or via the global queue� A busy worker
should be able to continue its work with as little interference as possible� If no
worker is idle	 there should be no overhead caused by the scheduler� On the
other hand we would like a idle worker to get a new task as soon as possible�
The new task should be found without disturbing any busy worker� We have
several questions to answer when the scheduler is designed�

� Should a busy worker be interrupted	 or should it voluntarily move tasks
to the global queue�

� If we allow an idle worker to interrupt a busy worker	 should the idle
worker steal tasks from the busy worker�s stack or should the busy worker
move the tasks to the global queue�

� How many tasks should be moved from a busy worker and�or how many
tasks should the worker keep�

� Should we look for a scheduler that can often give the best performance
or are we happy with average but predictable performance�

To construct a perfect scheduler is di�cult because there are several pa�
rameters to be tuned and the result obtained depend on the properties of the
executed program� Our experience is however that even a simple scheduler
works well in most cases	 only in extreme cases must more advanced schedulers
be used� We have experimented with three di�erent schedulers�

steal An idle worker will steal one task from any busy worker� This requires
that the local stack is protected by a lock which limits the workers freedom
to pop a task from its own task stack�

This scheduler is very eager and typical parallel benchmark problems are
solved in very short time� The problem is if too many workers are idle and
few tasks are available� The system will then show very bad performance
due to thrashing�

��



voluntary Busy workers periodically move tasks to the global task queue� The
idle workers just take tasks from the global queue�

This scheduler has good performance for programs with �ne grained con�
currency� Workers will have a small overhead for moving task to the global
queue but will spend very little time in the scheduler�

signal An idle worker will send a signal to all busy workers and wait for a task
to be added to the global queue� The busy workers will have to monitor
this signal but this can be coded in existing signal handling and does
therefore not cause any additional overhead�

The scheduler shows good predictable performance	 the drawback is that
an idle worker must wait for some time in the scheduler for a task to be
added�

Notice that there is no di�erence between AND and OR parallel tasks� They
are all handled in a uniform scheduler�

��� Detection of Termination

The detection of termination is di�cult problem in parallel computation� In
the current implementation	 the scheduler uses a busy worker bit �eld to detect
termination� Each worker clears its bit when it enters the scheduler� A worker
in the scheduler can detect termination by checking if all bits are zero�

In addition to the busy worker bit �eld the scheduler checks operating system
related tasks	 e�g�	 if a suspended goal is waiting for a blocked network stream
or user terminal� The operating system can generate tasks in the future that
must be handled	 the execution must therefore suspend until no such tasks can
be added�

� Evaluation

This section is not a complete evaluation of the system	 it is only intended as
an overview of how the Penny system compares to other systems and how it
performs on a multi processor architecture� All benchmarks were executed on
a SPARCcenter����� running SunOs ����

��� KLIC vs� Penny

To evaluate how implicit parallelism compares to explicit parallelism the Penny
system was compared to the KLIC system ���� The KLIC compiler compiles
KL� programs into C and produces very fast code� A �ne grained concurrent
benchmark was chosen since this will stress the scheduler of the Penny system�

Table 
 shows the performance of the KL� �life� benchmark� The timings
were the best in ten runs� For the KLIC system the ten runs were all done in

�




Proc � � � � 

KLIC ��

 ��� 

� ��� ���
Penny ���� ��
� 
�� ��
 

�
P�K ratio ��� ��� ��� ��� ���

Figure 
� The game of life �time in milliseconds�

one execution to avoid system time overhead in the initialization of heap areas�
In the Penny system heap allocation is done at start up and is not included in
the reported execution time�

The KL� version of �life� is a reduced game of life where each cell only
has four neighbors� The grid is divided into clusters and the clusters are then
distributed on the available processors� We ran the experiment with a ��x��
grid divided into twelve clusters of ��x�� cells each� The division allows an even
distribution of clusters on available processors�

In the Penny version no annotations are necessary to parallelize the program�
The program is simpli�ed since there is no need to divide the program up
into clusters	 all cells are treated equally� A benchmark like the life program
could be the death of an implicit parallel system like Penny but it turns out
that the Penny system performs extremely well considering the di�erence in
implementation technology�

The �gures in the table 
 show that the Penny system	 for this benchmark	
only is twice slower than the KLIC system while the normal factor between the
KLIC system and Penny is around four to six �sometimes up to ten�� There
are several possible reasons for the life benchmark shows so good results for the
Penny system�

� The KLIC system is much faster on instruction decoding since it does not
have the overhead of an emulator� Since a large part of the execution time
is spent in other parts of the system the instruction decoding handler is
not so important for this benchmark�

� The KLIC system allocates suspended goals on the heap and does not
explicitly reclaim the structures once they are re�executed� The cache
performance of the Penny system could be better in this respect but these
e�ects are very hard to measure�

� Binding shared variables �shared between nodes� is in the KLIC system
considerably more expensive than binding non�shared variables� In the life
benchmark about ��� of the communication �through variables� is per�
formed with shared variables� However	 experiments with di�erent cluster
size indicate that this the KLIC system is fairly robust in its performance	

��



Proc � � � 

MUSE ��� ��� ��� ���
Penny �� �� ��� ���
P�M ratio ��� ��� ��� ���

Figure �� Nine queens �time in seconds�

only when the grid is divided into very small clusters does a decrease in
performance occur�

The main de�ciency of the Penny system compared to the KLIC system is its
naive way of handling builtin procedure such as arithmetic� The Penny system
must also handle the simple guards as deep computations since the compiler
will not detect the possibility to make a ��at suspension��

��� MUSE vs� Penny

To evaluate how the Penny system performs for non�deterministic computations
the system was compared to MUSE	 an or�parallel Prolog system available with
SICStus ��� �����

Table � shows the performance of a �nine queens� benchmark� As is clearly
seen the MUSE system outperforms the Penny system by almost a factor eight�
This is not surprising since the MUSE system uses back�tracking whereas the
Penny system uses copying to perform non�deterministic computations� Notice
however that the relative performance decreases	 an indication that the Penny
system scales up well when the number of processors are increased�

In this version of the queens program no intelligent constraint handling is
performed nor is concurrency used	 so the Penny system will not make up for
the copying overhead with a smaller search space or increased parallelism� This
benchmark was selected because it is a worst case comparison �worst for Penny�
of the two systems�

By using a benchmark where the Penny system could bene�t from its more
advanced search strategies	 Penny would be put in a better light but this would
be to compare apples and pears�

The MUSE system is	 like the Penny system	 an emulated system� The
native�code SICStus compiler will run the same benchmark in ��� seconds on
the same machine�

��� Scaling

To show how well the system scales when the number of processors are increased
a set of benchmarks were executed on a SPARCcenter����� with twenty proces�

��



200

300

400

500

700

1000

1500

2000

3000

4000

1 2 4 6 8 10 12 14

T
im

e 
m

s

No. of workers

Execution time

mastermind
matrix
turtles

kkqueen
tsp

Figure �� deterministic benchmarks

sors� We did not have exclusive control of the machine so the benchmarks were
executed while other users where using the machine �four processors where used
for a ball�bearing simulation ����

Figure � shows �ve deterministic benchmarks often used in the committed
choice community� A log�log scale is used to clearly show the decrese in perfor�
mance fwhen more than twelve processos are used�

mastermind� The mastermind puzzle by E Tick	 using two guesses and three
colours�

matrix� A ���x��� matrix ��lled with ones to avoid using big�nums� multi�
plied by a vector�

turtles� The turtles puzzle by E� Tick�

kkqueen� The candidates�non�candidates queens program by K� Kumon�E�
Tick	 using 
 queens�

tsp� A near�optimal solution to the traveling salesman problem by M� Veanes	
using �� nodes�

The �gure shows that the system scales up rather well even for these small
benchmarks� Problems only start to occur when twelve processors are used�
The benchmarks where executed using the stealing scheduler� We expect the

��



1000

2000

3000

4000

5000

10000

20000

30000

40000

1 2 4 8 12 14 16

T
im

e 
m

s

No. of workers

Execution time

"voluntary"
"steal"

Figure 
� Scheduler comparison

voluntary scheduler to perform better but we have no results available for these
benchmarks at this point�

The benchmarks can all be executed from left to right without any suspen�
sions and can therefore be executed as Prolog programs� The execution time
for the benchmarks using the emulated�code compiler in SICStus ��� ���� is two
to three times smaller� This is mainly due to better compilation techniques and
far better handling of builtin procedures�

��� Scheduling

We have only preliminary results for the di�erent schedulers� Figure 
 shows
a game of life benchmarks �all eight neighbors� using the steal and voluntary
schedulers� As is clearly seen the voluntary scheduler has very big problems
when one or two processors are used� This is because the worker spends most of
its time moving task to and from the global task queue� When more processors
are used	 the voluntary sharing of work pays o� and when more than eight
processors are used the voluntary scheduler outperforms the steal scheduler�

These �gures are very preliminary	 we know how to avoid the initial overhead
for the voluntary scheduler but have not yet been able to redo the benchmark�

��



� Summary

We have described the fundamental components of a parallel implementation of
AKL that allows both and� and or�parallel execution� The main advantageous
features of the implementation are the representation of the execution state to
avoid locks as much as possible	 the memory management method to reclaim
almost all administrative structures	 and its �exible and powerful scheduling
scheme�

We also presented promising performance results comparing the system to
KLIC and MUSE	 which are two of the fastest parallel logical language system	
as well as the preliminary scheduler performance�

further investigation

To compete with systems such as KLIC and SICStus the Penny system needs a
better compiler� A compiler that can generate better decission code and handle
builtin procedures e�ciently will raise the performance to the level of emulated
SICStus or half the speed of KLIC� This will hopefully be acheived when the
compiler developed by Per Brand ��� is integrated in the system�

The system can today only handle uni�cation	 it is an open question if
the binding scheme can be adapted to support	 for example	 a �nite domain
constraint system� This will hopefully be investigated in the near future�

acknowledgments and remarks

The parallel implementation of AKL is developed as a part of the ACCLAIM
Esprit project	 EP ��
��

Some of the evaluations have been done on the SPARCcenter����� of IDA
at the University of Link�oping� A special thanks to Prof� Peter Fritzson who
has given us the opportunity to use the machine�

References

��� Khayri A� M� Ali� A parallel copying garbage collection scheme for shared�
memory multiprocessors� New Generation Computing	 �����	 December
�

��

��� Galal Atlam and Johan Montelius� Parallelization of Garbage Collection
in a CCP System	 Penny� Acclaim deliverable �����	 SICS	 June �

��

��� Per Brand� A Decision Graph Algorithm for CCP Languages� Acclaim
deliverable �����	 SICS	 June �

��

��� Torkel Franz�en� Some formal aspects of AKL� SICS Research Report
R
����	 Swedish Institute of Computer Science	 �

��

��



��� Sverker Janson� AKL A Multiparadigm Programming Language� Upp�
sala Thesis in Computing Science �
	 SICS Dissertaion Series ��	 Uppsala
University	 SICS	 �

��

�
� Sverker Janson and Seif Haridi� Programming paradigms of the Andorra
kernel language� In Vijay Saraswat and Kazunori Ueda	 editors	 Logic Pro�
gramming� Proceedings of the ���� International Symposium	 pages �
� 
��
	 San Diego	 USA	 �

�� The MIT Press�

��� Sverker Janson and Johan Montelius� The design of the AKL�PS ��� proto�
type implementation of the Andorra Kernel Language� ESPRIT deliverable	
EP ���� �PEPMA�	 Swedish Institute of Computer Science	 �

��

��� KLIC� klic�requests!icot�or�jp	 ICOT�

�
� Johan Montelius and Khayri A� M� Ali� An and�or�parallel implemetation
of akl� New Generation Computing	 �����	 December �

��

���� SICStus v�� URL http���www�sics�se�ps�sicstus�html	 SICS�

���� D� H� D� Warren� An abstract prolog instruction set� Technical Report
��
	 SRI International	 �
���

��


