
How large is the TLB?

Johan Montelius

September 13, 2021

Introduction

The Translation Lookaside Bu�er, TLB, is a cache of page table entries that
are used in virtual to physical address translation. Since the cache is of �nite
size we should be able to detect a di�erence in the time it takes to perform a
memory operation depending on if we �nd the page table entry in the cache
or not.

We will not have access to any operations that will explicitly control the
TLB but we can access pages in a way that forces the CPU to have more
or less page hits. We will set up a number of virtual pages in memory and
if we access them linearly we should be able to see some changes when we
have more pages than the TLB can handle.

1 Measuring time

To explore the di�erence between hitting the TLB and having to �nd the
page table entry in memory, we will write a small benchmark program that
accesses more and more pages to see when the number is to large to �t in
the TLB. In order to do this we �rst of all need a way to measure time.

1.1 process or wall time

First of all we need to decide if we want to measure the process time or the
wall time. The process time is the time our process is scheduled for execution
whereas the wall time also includes the time the process is suspended. The
process is suspended if the operating system has to schedule another process
or if our process is waiting for something, for example I/O. In this experiment
we will do �ne with the process time.

Look up the manual entry for the procedure clock(), it will give us a
time stamp that we can use to calculate the elapsed process time. There is
then a macro, CLOCKS_PER_SEC, that we use to translate the timestamp into
seconds. This is the time we would normally use if we are not doing any I/O
or other things that we also want to include in our measurements.

1.2 the test rig

We want to measure how long time it takes to access a page and see if the
time increases when we increase the number of pages. We will set a maximum

1

number of pages (we will start with 16) and then measure the time it takes
to access one page, two pages, three pages etc. To get more reliable �gures
we need to do a multiple of references in each test.In order to make it easier
to compare the numbers we will make the same number of references in each
test. We therefor set up a loop in a loop where the inner loop will access the
number of pages in the test and the outer loop is adjusted to make the total
number or references the same.

The increment of the sum is only there to have something to measure.
We will later remove it and replace it what we really want to measure.

#include <s t d l i b . h>
#include <s td i o . h>
#include <time . h>

#define PAGES (16)
#define REFS (1024*1024)

int main (int argc , char *argv []) {

clock_t c_start , c_stop ;

p r i n t f ("#pages \ t proc \ t sum\n") ;

for (int pages = 1 ; pages <= PAGES; pages+=1) {

int l oops = REFS / pages ;

c_start = c lo ck () ;

long sum = 0 ;

for (int l = 0 ; l < loops ; l++) {
for (int p = 0 ; p < pages ; p++) {

/* dummy opera t ion */
sum++;

}
}

c_stop = c lock () ;

{
double proc ;

proc = ((double) (c_stop − c_start))/CLOCKS_PER_SEC;

2

p r i n t f ("%d\ t %.6 f \ t %ld \n" , pages , proc , sum) ;
}

}
return 0 ;

}

In the example above I've used a million references but this might di�er
from machine to machine. Experiment with less or more references to see
how many you would need to get measurements that do not �uctuate to
much. In the printf() statement you can change the sequence %.6f\t to
write more or less decimals. How many signi�cant �gures is it reasonable to
show?

1.3 don't let i go

Do the numbers look right? Is the time to do the �rst and second test slightly
longer than the other tests? Is this just a glitch in the system or is it real?
Hmm, there is something going on here? What is happening?

When you see strange numbers try to �gure out what the problem could
be. In this case the numbers show that it takes more time to run the outer
loop one million times, where we inside the loop only loops once, compared
to making the outer loop 500.000 times and the inner loop twice. If you think
about it is what we would expect since there is an overhead in preparing for
the inner loop and jumping out of the loop. The more time we spend inside
the loop the less the overhead will make a di�erence.

1.4 optimize but not too much

We will in the end try to estimate what it costs to do one memory reference.
The problem is that test rig we now have set up actually makes tons of
memory references by itself. The sum, l and p are probably stored on the
stack so we will make multiple references to the stack in each test. We could
try to reduce the memory overhead by turning on some optimizations. Try
the following if you are using gcc.

> gcc -o tlb -O tlb.c

This will turn on the �rst level of optimizations. I think that you have a
substantial improvement. You can verify what happened by looking at the
generated assembly. Using the -S �ag we can ask the compiler to generate
an assembler �le, try the following:

> gcc -o tlb-opt.s -S -O tlb.c

:

3

> gcc -o tlb-reg.s -S tlb.c

Now compare the two �les and see how they di�er. Look for the call to
clock where you will �nd the loop. My guess is that the regular version will
be �lled with references like -16(%rbp) i.e. a reference using the base stack
pointer. In the optimized version we have references to di�erent registers
such as %ebx and %edx.

How fast can we do this loop? Try using -O2 the second level of optimiza-
tions. What is happening now, is this really true? One should be careful
when doing measurements, sometimes the quickest way to do something is
not to do it at all.

2 The benchmark

So now for the actual benchmark. We're going to allocate a huge array that
we will access in a linear fashion. The question is if it takes more time to
access 4 pages compared to 16, 32 or even more pages.

2.1 a �rst try

We �rst de�ne the page size and we assume that we have a page size of 64
Bytes. This is of course not the case since we know that the page size of our
machine is probably 4 KiByte but we will use it as a �rst step to see what
it is that we are measuring.

#define PAGESIZE 64

Then we allocate a huge array and why not call it memory. Note that
we cast the PAGESIZE to a long integer i order for the multiplication to work
even if we start to use a total memory that is larger than 4GiByte (and we
will in the end). We also run through all pages and write to them just to
force the operating system to actually allocate the pages and set up the page
table entries.

char *memory = mal loc ((long)PAGESIZE * PAGES) ;

for (int p = 0 ; p < PAGES; p++) {
long r e f = (long)p * PAGESIZE;
/* f o r c e the page to be a l l o c a t e d */
memory [r e f] += 1 ;

}

We also add some nice printout so that we can look at our �gures later
and see what parameters we used. The initialization and printout is added
before the code that starts the sequence of test.

4

p r i n t f ("#TLB experiment \n") ;
p r i n t f ("# page s i z e = %d bytes \n" , (PAGESIZE)) ;
p r i n t f ("# max pages = %d\n" , (PAGES)) ;
p r i n t f ("# t o t a l number or r e f e r e n c e s = %d Mi\n" , (REFS/(1024*1024))) ;
p r i n t f ("#pages \ t proc \ t sum\n") ;

Then it is time to do the benchmark and we simply replace the dummy
(sum++) operation with a page reference that we use to increment the sum.

/* t h i s w i l l r e p l a c e our dummy opera t ion */
long r e f = (long)p * PAGESIZE;
sum += memory [r e f] ;
// sum++;

If you have everything in place you should see something like the printout
below. You can compare these number to the dummy that we performed
before (I've used 10 million references).

#TLB experiment

page size = 64 bytes

max number of pages = 16

total number or references = 10 Mi

time for all references in sec (1000000)

#pages proc sum

1 0.040 10485760

2 0.060 10485760

3 0.043 10485759

4 0.036 10485760

:

:

There is a small di�erence in accessing a memory references compared to
just doing a dummy addition but the di�erence is not very large. If you try
using up to 64 pages you might notice something strange and predictable
behaviour. We have sorted out why the initial tests show slightly higher
values but there might also be other test that show higher values. The
di�erence likely has to do with the the size and structure of the �rst level
data caches.

The initial preparations of the benchmark are important since it tells us
what order of magnitude the di�erences have to be in order to detect them.
If TLB misses only increase the execution time by 10 percent then we will
have a hard time separating what is actually an e�ect of TLB misses and
what is an e�ect data caches etc.

5

2.2 running some tests

Let's �rst increase the page size to something more reasonable such as 4
KByte. This is probably the size that the machine that you're running on
uses but if you're not running on a x86 architecture you should look it up.

#define PAGESIZE (4*1024)

First see if there is any di�erence using 16, 32 or why not 64 pages. Hmm,
switch back to a page size of 64 bytes and then try 64 pages again. How
large is the memory that we use when we use 64 pages of size 64 byte each?
How many real pages are used then?

What happens if we step up to 512 pages or why not 4096? Since we're
probably not that interested in what happens between 2378 pages and 2379
we can change the benchmark to try double as many pages in each iteration.

for (int pages = 4 ; pages <= PAGES; pages *=2) {

Ouch, that hurts. There is de�nitely a penalty that we take when using
more pages.

2.3 turn it into a graph

So you now have some nice printouts of the time it takes to reference a page
depending on the number of pages that we use. As you see there is de�nitely
a penalty as we use more pages. We can create a nice plot of the values using
a tool called gnuplot.

First we save the output in a �le called tlb.dat. This is easily done
using the redirection operator of the shell.

$ gcc -o tlb -O tlb.c

$./tlb > tlb.dat

You can run gnuplot in interactive mode (and you should learn how to
do so to quickly generate a graph) but it's better to write a small script that
generates the plot. Write the following in a �le tlb.p.

s e t t e rmina l png
s e t output " t l b . png"

s e t t i t l e "TLB benchmark , 4 KiByte pages , 10 Gi ope ra t i on s "

s e t key r i g h t cen te r

s e t x l ab e l "number o f pages "

s e t y l ab e l " time in s "

6

use l og s c a l e i f we use doubl ing o f number o f pages
s e t l o g s c a l e x 2

p l o t " t l b . dat" u 1 :2 w l i n e s p o i n t s t i t l e "page r e f s "

Now run gnuplot from the command line and let it execute the script.

> gnuplot tlb.p

You should now �nd a �le called tlb.png with a nice graph. Experiment
with gnuplot and add more lines in the same graph. If you generate data for
the dummy test, using pages of 64 bytes and 4K bytes you can print them
in one graph using the following directive.

p l o t " tlb4K . dat" u 1 :2 w l i n e s p o i n t s t i t l e "page s i z e 4K bytes " , \
" t lb64 . dat" u 1 :2 w l i n e s p o i n t s t i t l e "page s i z e 64 bytes " , \
"dummy. dat" u 1 :2 w l i n e s p o i n t s t i t l e "dummy"

7

