
Storage - take your time

Johan Montelius

HT2016

1 Introduction

In this experiment we will look at secondary storage i.e. drives that we
have connected to our computer to provide persistent storage. We will do
some performance measurements to try to estimate how long time read and
write operations actually take. You can do these experiments using your
own computer and preferably should since you then have a more controlled
environment.

There is a di�erence in performance between a hard-disk drive and a
solid-state drive. If possible run these experiments on di�erent machines to
see the di�erence. Do the experiments in a group with di�erent machines to
see the di�erence.

We will use the term drive to mean the physical device, hard-disk or
solid-state, not to confuse with driver that is the operating system module
that is responsible for talking to the drive.

2 File operations

In the benchmarks that we will implement, we will use the �le operations that
operate on �le descriptors. These are low level operations that the operating
system provide and will give us more control over what we are doing. The
alternative is using the stdio library but then our benchmark would be
running on top of a layer that bu�ers our operations to be more e�cient. The
e�ciency is gained by doing write operations in the background, something
that often is �ne but it will not tell us when the data is actually on the drive.

open, read and write

We will only use three primitives: open, read and write. Look up these
function in the man pages; you have state that you want to look at the
system calls since there are also shell commands with the same names and
these will show up by default.

> man 2 open

:

int open(const char *pathname, int flags, mode_t mode)

To open a �le we specify the path name i.e. the name of the �le, some
�ags that specify how the �le should be opened and the mode of the �le if

1

we should create it. In our benchmarks we will open the �le for reading and
writing and specify that it, if it is created it should have user read and write
permissions.

int f l a g = O_RDWR | O_CREAT | O_DSYNC;
int mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
int fd = open (name , f l ag , mode) ;

There is one important �ag here, the O_DSYNC �ag. This �ag specify that
we do not want a write operation to return unless the thing that we have
written is actually pushed to the drive. We will not accept any cheating, the
operating system should have pushed the data to the drive and received an
acknowledgment.

read, write and lseek

We will only read and write dummy values in our �les using the procedures
read() and write(). Both of these procedures work the same, they take
a �le descriptor, the address of a bu�er and the number of bytes that they
should read or write.

int bu f f e r = 42 ;
wr i t e (fd , &bu f f e r , s izeof (int)) ;

int bu f f e r ;
read (fd , &bu f f e r , s izeof (int)) ;

Both procedures will operate on the �le given the current position i.e. an
index that tells the operating system where in the �le we want to read or
write. This position is mostly handled automatically, if you read from the
beginning of a �le you just read and the position will move forward as you
read. We however want to read and write at random locations so we will set
this position explicitly. This is done using the procedure lseek() as shown
in the examples below.

int pos = 512 ;
l s e e k (fd , pos , SEEK_SET) ;

:
int s tep 64 ;
l s e e k (fd , step , SEEK_CUR) ;

:

The third argument to lseek() decides if the value, given as the second
argument, should be interpreted as an absolute value (512 in the example
above) or as an o�set to the current position (64 in the example).

2

3 Before we go

We will start by generating a large �le so that we have something to work
with. You could of course take any �le that you happen to have but it will
have to be large enough for our experiments. We will generate a �le that is
512 MiBytes so if you have a movie on your drive you could use it but the
code that you write will be reused in writing the benchmark so you might
as well generate a new �le.

Create a �le called generate.c and include some good to have include
�les. Also de�ne the macros BLOCKS and SIZE that describes that we will
generate a million blocks of size 512 bytes each.

#include <s t d l i b . h>
#include <s td i o . h>
#include <unis td . h>
#include <sys / types . h>
#include <f c n t l . h>
#include <as s e r t . h>

#define BLOCKS 1024*1024
#define SIZE 512

Start by �nding the �le name from the command line. Open the �le and
make sure that we actually managed to open it. When we generate the �le
we do not have to give the O_DSYNC �ag since we're not interested in how
long time each write operation took.

int main (int argc , char *argv []) {

i f (argc < 2) {
p r i n t f (" usage : generate < f i l e name>/n") ;
return −1;

}
char *name = argv [1] ;

int mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
int f l a g = O_RDWR | O_CREAT;
int fd = open (name , f l ag , mode) ;
a s s e r t (fd != −1);

Then we loop over the blocks and make sure that we write in each block.
We are a bit paranoid here as it would be su�cient to just write at the last
position, but we don't want the operating system nor the drive to do clever
things behind our backs.

int bu f f e r ;

3

for (int b=0; b < BLOCKS; b++) {
l s e e k (fd , SIZE*b , SEEK_SET) ;
bu f f e r = b ;
wr i t e (fd , &bu f f e r , s izeof (int)) ;

}
c l o s e (fd) ;
p r i n t f ("done\n") ;

return 0 ;
}

Save the �le, compile and generate a �le foo.txt. Check if the �le is
actually 512 MiByte in size using the ls -l command. If everything looks
OK, we're ready to go.

4 Read performance

Our �rst benchmark will be to examine the read performance. Make a copy
of your �le and call it read.c and make the following updates. We now only
list the changes so if you've used an existing �le you will have to go through
the previous section.

We will use clock_gettime() to do time measurement so we need the
header �le time.h. We will also do a number of read operations separated
by STEP bytes and we will read from COUNT number of blocks.

#include <time . h>

#define STEP 64
#define COUNT 1000

The idea is that we will choose a block by random and then read the �rst
bytes of this block, then the bytes at position 64, 128 etc. The question is if
there is any di�erence in reading the �rst entry in a block and reading the
second or third entry.

We will gather statistics and present the di�erent quartiles in execution
time. The easiest way to do this is to collect the execution times and sort
them and to do this we need a function that compare to entries.

int compare (const void *a , const void *b) {
return (int) (* (long *) a − *(long *)b) ;

}

We will record the execution time in nano-seconds so we also provide a
function that takes two timespec entries and returns the di�erence as long.

long n_sec (struct t imespec * s t a r t , struct t imespec * stop) {
long d i f f_ s e c = stop−>tv_sec − s t a r t−>tv_sec ;

4

long d i f f_nsec stop−>tv_nsec − s t a r t−>tv_nsec ;
long wall_nsec = (d i f f_ s e c *1000000000) + d i f f_nsec ;
return wall_nsec ;

}

We have what we need to implement the benchmark. We start as before
by opening the �le that is given to us on the command line. We then allocate
some space to hold a table where we will record the execution time. The
table holds an array of time-stamps for each of the indexes that we will access
i.e. 0, 64, 128, ... Each of these arrays are COUNT long.

int e n t r i e s = SIZE / STEP;

long ** t ab l e = mal loc (s izeof (long *) * e n t r i e s) ;

for (int i = 0 ; i < e n t r i e s ; i++) {
tab l e [i] = mal loc (s izeof (long) * COUNT) ;

}

Now for the actual benchmark, we will access COUNT blocks and generate
a radium number from 0 to BLOCKS minus one. We set the current position
to the start of this block and then perform a number of read operations. We
clock each read operation, store the result and forward the position by SIZE

steps.

for (int c=0; c < COUNT; c++) {
int b = rand () % BLOCKS;
l s e e k (fd , b*SIZE , SEEK_SET) ;

for (int e = 0 ; e < e n t r i e s ; e++) {
struct t imespec t_start , t_stop ;
int bu f f e r ;
c lock_gett ime (CLOCK_MONOTONIC, &t_start) ;
read (fd , &bu f f e r , s izeof (int)) ;
c lock_gett ime (CLOCK_MONOTONIC, &t_stop) ;
l s e e k (fd , STEP − s izeof (int) , SEEK_CUR) ;
t ab l e [e] [c] = n_sec(&t_start , &t_stop) ;

}
}

The only thing that is left is to collect the statistics and we do this one
row at a time. Note that we also print the 90 percentile since the maximum
value can di�er very much.

p r i n t f ("#N\tMin\tQ1\tMed\tQ3\tD9\tMax\n") ;
for (int e = 0 ; e < e n t r i e s ; e++) {

qso r t (t ab l e [e] , COUNT, s izeof (long) , compare) ;

5

long min = tab l e [e] [0] ;
long q1 = tab l e [e] [COUNT/ 4] ;
long med = tab l e [e] [COUNT/ 2] ;
long q3 = tab l e [e] [3 * (COUNT/ 4)] ;
long d9 = tab l e [e] [9 * (COUNT/1 0)] ;
long max = tab l e [e] [COUNT−1] ;
p r i n t f ("%d\ t%ld \ t%ld \ t%ld \ t%ld \ t%ld \ t%ld \n" , e*STEP, min , . . . e t c) ;

}

That's it, run you �rst benchmark as �nd out how fast you hard drive is.
Hmm, not very bad is it? Just for fun, change the COUNT value to one, run
the benchmark and write down the execution time. Now turn your computer
o�, turn it back on again and run the same test again - hmm, run it again.
That was probably only some random operating system thing - repeat, is it
reproducible?

the page cache

When a �le is read from disk, the operating system will place the read blocks
in what is called the page cache. The idea is of course that if we read form
the �le once it is very likely that we will read from it again so we keep a
copy of the blocks that we read in a cache.

If you use the following command you will see how the memory is used
by the operating system. There is one entry called buff/cache and this is
the area used for cached �les.

> free

total used free shared buff/cache available

Mem: 8089288 1321116 5221168 943912 1547004 5476420

Swap: 8301564 6644 8294920

We can direct the operating system to drop �les from the cache by run-
ning the command below. This will run a shell in supervisor mode and let
this shell write a 1 to the �le drop_caches. This is an example of how we
can interact with the kernel by using the regular �le operations. All of the
�les under /proc directory are special �les that allow us to interact with the
kernel.

> sudo sh -c 'echo 1 > /proc/sys/vm/drop_caches'

Check if the size of the cache has been decreased. Run the benchmarks
again and see if there is a di�erence when we clear the cache.

6

evaluation

What do the numbers mean? Is there a di�erence in access time, why? Are
there more caches involved, does the hard-drive have a cache of its own?

Many questions and you will probably not be able top answer them all
but you should be able to do a nice graph to go with your �ndings. You can
quickly generate a nice graph using gnuplot, everything is prepared so we
only need to save the data in a �le and run some gnuplot commands.

> ./read foo.txt > foo.dat

Now start gnuplot and give the following commands:

> gnuplot

:

gnuplot> set xrange[-30,500]

:

gnuplot> set xtics 64

:

gnuplot> set boxwidth 10

:

gnuplot> plot 'read.dat' u 1:3:2:6:5 with candlesticks

:

Create a �le read.p where you write a gnuplot script that includes the
commands above. In the beginning of the �le you also specify that you would
like to generate a .png �le and that we don't really need the legend. Set the
xlabel, ylabel and adjust the yrange to start from 0 ([0:*]). Now you
have a nice graph to show you friends when you explain the di�erence in
read execution time.

set terminal png

set output "read.png"

unset key

:

Run the script from the command line by giving it as an argument to
gnuplot. Now you have a nice graph to show you friends when you explain
the di�erence in read execution time.

5 Write performance

So now that we know something about the read performance it's time to test
the write performance. Make copy of your benchmark and call it write.c;

7

there are only some small changes that we need to �x. Make sure that you
have the O_DSYNC �ag set, this will prevent the operating system driver from
pulling your leg.

int f l a g = O_RDWR | O_CREAT | O_DSYNC;

Then we simply replace the read operation with a write operation.

int bu f f e r = e ;
wr i t e (fd , &bu f f e r , s izeof (int)) ;

That's it, test it and see if there are any di�erences compared to the read
benchmark.

living on the edge

You might have discovered that writing takes a whole lot longer time than
reading, but we can improve things dramatically by cheating. Remember
that we set the O_DSYNC �ag to make sure that the thing that we wrote was
actually pushed out to the disk and not just written to a bu�er waiting for
better times. Do the same experiment but now without the O_DSYNC �ag -
any improvements?

The operating system will now allow write back i.e. it will acknowledge
that the write operation has been performed but the data is still in a bu�er
allocated by the operating system. The operating system will push the data
to drive as soon as it �nds a suitable moment, it might have done so al-
ready but it is not hanging around waiting for a con�rmation. If you trust
your power supply this is probably very good strategy but if your computer
crashes, the data might not be on the drive.

Note - using O_DSYNC only means that the operating system has pushed
the data to the drive. The drive might still have the data in it's own bu�er
but it is the responsibility of the drive to push it to the physical disk or �ash
memory.

6 Memory speed

While we're at it, we might as well do two more benchmarks. The �rst thing
we should check is the read and write performance of the regular memory.
To do this there are only a few changes we have to do to our benchmark
program. Make a copy of read.c and call it mread.c and do the following
changes.

We will need to do more than one read operation to get an accurate
answer so lets de�ne a macro called LOOP.

#define LOOP 64 // can not be 0

8

Then we allocate a large array on the heap that of course has the size
determined by the number of BLOCKS and their SIZE. We of course remove
everything that is related to the opening of a �le.

int *heap = mal loc (s izeof (int)*BLOCKS*SIZE) ;

Now we replace the read operation in the benchmark with a loop that
reads from our array.

for (int l = 0 ; l < LOOP; l++) {
bu f f e r = bu f f e r + heap [b*SIZE+e+l] ;

}

The �nal trick is to divide the calculated execution time by LOOP to
obtain the execution time of one read operation. This is why LOOP can not
be set to 0.

t ab l e [e] [c] = (n_sec(&t_start , &t_stop) / LOOP) ;

What is the read performance of main memory? Can you trust the
number? Do a small change to the program, set LOOP to 0 and remove the
division, how long time does it take to do nothing (or rather, measure the
time)? Should we compensate for this? What if we add the following to our
program:

#de f i n e RES ?? // the time i t t a k e s to do noth ing
:

t ab l e [e] [c] = ((n_sec(&t_start , &t_stop) − RES) / LOOP) ;

This gives us something more accurate but now we have hard coded the
benchmark for this particular machine. You could let the benchmark �rst
determine what the time is to do nothing when it starts but let's not over
do things.

Do some experiments and change the number of COUNTS between 10 and
10000, what is going on? Change also the write benchmark in the same way
and include for example the operation below in the loop. Run with a small
number of counts - what is happening?

heap [b*SIZE+e+l] = e+l ;

Let's try to access the whole array before we run the benchmark loop.
Add the following to your programs, both to mread.c and mwrite.c. Add
it immediately after allocating the array - any di�erence?

for (int b =0; b < BLOCKS; b++) {
heap [b*SIZE] = b ;

}

On my computer a write operation seams to be faster than a read oper-
ation, this is probably only a problem with the clock - right? (when I say

9

something like this it is to make you think, there is nothing wrong with my
clock)

7 A mix of both

This experiment is only possible if you have sudo access to the machine that
you're running on. We will mount a new �le system using something called
tmpfs. This will create a drive that looks like a regular drive from the outside
but is actually implemented as a segment of the physical DRAM memory.
Things will be faster than any regular disk drive but once you turn o� the
power everything will be lost.

Start by creating a directory called for example dram. Then you run the
following command in a shell. Your user id is probably 1000 but check this
using the command id.

> sudo mount -t tmpfs -o mode=744,uid=1000,gid=1000 tmpfs ./dram

So far so good, what you have now done is created a virtual drive and
mounted it using the directory dram. Anything we place in this directory
will be allocated in physical memory (if you have enough of it). Start by
copying the �le foo.txt to this directory. Then run the benchmarks read
and write using the copy as the target.

> ./read dram/foo.txt

:

Any di�erence in read performance? How about write performance?

8 Summary

You should now have a better understanding of the performance of secondary
storage i.e. your hard-disk or solid-state drive. We have looked at the time
it takes to do a read or write operation to a random block in a large �le
and made some observations. As an exercise write down the approximate
execution time for the following operations:

� Reading or writing to a random location in memory.

� Reading or writing to a random location of a �le that has been cached
by the drive and/or the operating system.

� Reading or writing to several positions in the same �le block.

� Reading or writing to a random location of a �le from a cold start i.e.
not cached by the operating system nor drive.

The performance of a hard-disk drive di�ers from the performance of a
solid-state drive - what is the di�erence and when does it matter?

10

