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Introduction

In this assignment you're going to investigate the layout of a process; where
are the di�erent areas located and which data structures goes where.

1 Where's da party?

So we will will �rst take a look at the code segment and we will do so using
a GCC extension to the C language. Using this extension you can store a
label in a variable and then use it as any other value.

1.1 the memory map

Start by writing and compiling this small C program, code.c. As you see
we use two constructs that you might not have seen before, the label foo:
and the conversion of the label to a value in &&foo. If everything works �ne
you should see the address of the foo label printed in the terminal. The
program will then hang waiting for a keyboard input (actually anything on
the standard input stream).

#include <s td i o . h>

int main ( ) {

foo :

p r i n t f ( " the code : %p\n" , &&foo ) ;

f g e t c ( s td in ) ;
return 0 ;

}

So we have the address of the foo label, it could be something that
looks like 0x40052a (but could also be 0x55d8ef4426ce depending on which
version of Linux you're running). Hit any key to allow the program to
terminate and then we try something else.
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We will now tell the shell to start the process in the background. That
will allow us to use the shell while the program is suspended waiting for
input.

> ./code&

[1] 2708

the code: 0x55968c40f6ce

The number 2708 (or whatever you see) is the process identi�er of the
process. Now we take a look in the directory /proc where we �nd a directory
with the name of the process identi�er. In this directory there are about �fty
di�erent �les and directories but the only one we are interested in is the �le
maps. Take a look at it using the cat command 1.

$ cat /proc/2708/maps

:

:

What you see is the memory mapping of the process. Can you locate the
code segment? Does it correspond to the address we found looking at the
foo label? What is the protection of this segment?

To bring the suspended process back to the foreground you use the fg

command. Then you can hit any key to allow the program to terminate.

> fg

./code

>

1.2 code and read only data

To make things a bit more convenient we extend our program so that it will
get its own process identi�er and then print out the content of proc/<pid>/maps.
We do this using a library procedure system() that will read a command
from a string and then execute it in sub-process.

#include <s t d l i b . h>
#include <s td i o . h>
#include <sys / types . h>
#include <unis td . h>

char g l oba l [ ] = "This i s a g l oba l s t r i n g " ;

int main ( ) {

1OSX users can try: usr/bin/vmmap 2708
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int pid = getp id ( ) ;
foo :

p r i n t f ( " p roce s s id : %d\n" , pid ) ;
p r i n t f ( " g l oba l s t r i n g : %p\n" , &g l oba l ) ;
p r i n t f ( " the code : %p\n" , &&foo ) ;

p r i n t f ( "\n\n /proc/%d/maps \n\n" , pid ) ;
char command [ 5 0 ] ;
s p r i n t f (command , " cat /proc/%d/maps" , pid ) ;
system (command ) ;

return 0 ;
}

Look at the address of the global string, in which segment do you �nd
it? What is the protection of this segment, does it make sense? Now try to
allocate a global constant data structure, print it's address and try to locate
it - hmmm, is it where you thought it would be?

const int read_only = 123456;
:
:

p r i n t f ( " read only : %p\n" , &read_only ) ;
:

2 The stack

The stack in C/Linux is locate almost in the top of the user space and grows
downwards. You will �nd it in the process map and the entry will probably
look something like this:

7ffed89d4000-7ffed89f5000 rw-p 00000000 00:00 0 [stack]

Before we start to play around with the stack we ponder the memory
layout of the process and how it is related to the x86 architecture.

2.1 the address space of a process

This is on a 64-bit x86 machine so the addresses are 8 bytes wide or 16
nibbles (4-bit unit that correspond to one hex digit). Take a look at the
address 0x7ffed89f5000, how many bits are used? What is the 48'th bit?

In a x86-64 architecture an address �eld is 64-bits but only 48 are used.
The uppermost bits (63 to 47) should all be the same; in general, if they are

3



0 it's the user space and if they are 1 it's kernel space. The user space thus
ends in:

0x00 00 7f ff ff ff ff ff

The kernel space then starts in the logical address:

0xff ff 80 00 00 00 00 00

Take a look at the memory map of our test program - the last row is a
segment that belongs to kernel space but is mapped into the user space. This
is a special trick used by Linux to speed up the execution of some system
calls - system calls that will be completed immediately and can make no
harm can be executed directly without doing a full context switch between
user mode and kernel mode execution.

ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]

The use of the vsyscall, and the vsdo (which is the more recent approach
in how to improve system calls), is nothing you should memorize but it's fun
to look at things and understand where they come from.

2.2 back to the stack

So we have a stack and it should be no mystery in what data structures that
are allocated on the stack. We extend our program with a data structure that
is local to the main procedure and tracks where it is allocated in memory.

#include <s t d l i b . h>
#include <s td i o . h>
#include <sys / types . h>
#include <unis td . h>

int main ( ) {

int pid = getp id ( ) ;

unsigned long p = 0x1 ;

p r i n t f ( " p (0x%lx ) : %p \n" ,p , &p ) ;

p r i n t f ( "\n\n /proc/%d/maps \n\n" , pid ) ;
char command [ 5 0 ] ;
s p r i n t f (command , " cat /proc/%d/maps" , pid ) ;
system (command ) ;
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return 0 ;
}

Execute the program and verify that the location of p is actually in the
stack segment. If you run the programs several times you will notice that the
stack segment moves around a bit, this is by intention; it should be harder
for a hacker to exploit a stack over�ow and change things in the heap or vice
versa.

If you want the stack segment to stay put you can try to give the following
command in the shell:

$ setarch $(uname -m) -R bash

You don't have to understand what's going on but we're opening a new
bash shell where we have set the �addr-no-randomize �ag. This will tell the
system to stop fooling around and let the data segments be allocated where
they should be allocated. Linux is trying to protect you from hackers but
we're all friends here, right. Once you exit the shell you're back to normal.

2.3 pushing things on the stack

Now let's do some procedure calls and see if we can see how the stack grows
and what is actually placed on it. We keep the address of p, make some calls
and then print the content from the location of another local variable and
the address of p.

The procedure zot() is the procedure that will do the printing. It re-
quires an address and will then print one line per item on the stack. We
should maybe check that the given address is higher then the address of the
local variable r but it's more fun living on the edge.

void zot (unsigned long * stop ) {

unsigned long r = 0x3 ;

unsigned long * i ;
for ( i = &r ; i <= stop ; i++){

p r i n t f ( " %p 0x%lx \n" , i , * i ) ;
}

}

We use an intermediate procedure called foo() that we only use to create
another stack frame.

void f oo (unsigned long * stop ) {
unsigned long q = 0x2 ;

zot ( stop ) ;
}
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Now for the main() procedure that will call foo() and do some additional
print out of the location of p and the return address back.

int main ( ) {

int pid = getp id ( ) ;

unsigned long p = 0x1 ;

foo (&p ) ;

back :
p r i n t f ( " p : %p \n" , &p ) ;
p r i n t f ( " back : %p \n" , &&back ) ;

p r i n t f ( "\n\n /proc/%d/maps \n\n" , pid ) ;
char command [ 5 0 ] ;
s p r i n t f (command , " cat /proc/%d/maps" , pid ) ;
system (command ) ;

return 0 ;
}

If this works you should have a nice stack trace. The interesting thing is
now to �gure out why the stack looks like it does. If you know the general
structure of a stack frame you should be able to identify the return address
after the call to foo() and zot(). You should also be able to identify the
saved base stack point i.e. the value of the stack pointer before the local
procedure starts to add things to the stack.

You also see the local data structures: p, q, r and a copy of the address
to p. If this was a vanilla stack as explained in any school books, you would
also be able to see the argument to the procedures. However, GCC on a x86
architecture will place the �rst six arguments in registers so those will not
be on the stack. You can add ten dummy arguments to the procedures and
you will see them on the stack.

If you do some experiments and encounter elements that can not be
explained it might be that the compiler just skips some bytes in order to
keep the stack frames aligned to a 16-byte boundary. The base stack pointer
will thus always end with a 0.

Try locating the value of the variable i in the zot() procedure. It is of
course a moving target but what is the value of i when the location of i is
printed?

Can you �nd the value of the process identi�er? Convert the decimal
format to hex and it should be there somewhere.
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3 The Heap

Ok, so we have identi�ed the code segment, a data segment for global data
structures, a strange kernel segments and the stack segment. It's time to
take a look at the heap.

The heap is used for data structures that are created dynamically during
runtime. It is needed when we have data structures that have a size that
is only known at runtime or should survive the return of a procedure call.
Anything that should survive returning from a procedure can of course not
be allocated on the stack. In C there is no program construct to allocate data
on the heap, instead a library call is used. This is of coarse the malloc()

procedure (and its siblings). When malloc is called it will allocate an area
on the heap - let's see if we can spot it.

Create a new �le heap.c and cut and paste the structure of our main
procedure. Keep the tricky part the prints the memory map but now include
the following section:

char *heap = mal loc ( 2 0 ) ;

p r i n t f ( " the heap va r i ab l e at : %p\n" , &heap ) ;
p r i n t f ( " po in t ing to : %p\n" , heap ) ;

Locate the location of the heap variable, it's probably where you would
suspect it to be. Where is it pointing to, a location that is in the heap
segment?

3.1 free and reuse

The problem with using the heap is not how to allocate memory but to free
the memory, only free it once and not use memory that has been freed. The
compiler will detect some obvious error but most errors will only show up at
runtime and might then be very hard to track down. If you allocate a data
structure of 20 bytes every millisecond, and forget to free it you might run
out of memory in a day or two but if you only run small benchmarks you
will never notice.

Using a pointer to a data structure that has been free has an unde�ned
behavior meaning that the compiler nor the execution need to preserve any
predictable behavior. This said, we can play around with it and see what
might happen. Try the following code and reason about what is actually
happening.

int main ( ) {

char *heap = mal loc ( 2 0 ) ;
*heap = 0x61 ;
p r i n t f ( "heap po in t ing to : 0x%x\n" , *heap ) ;
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f r e e ( heap ) ;

char * f oo = mal loc ( 2 0 ) ;
* f oo = 0x62 ;
p r i n t f ( " foo po in t ing to : 0x%x\n" , * f oo ) ;

/* danger ahead */
*heap = 0x63 ;
p r i n t f ( " or i s i t po in t ing to : 0x%x\n" , * f oo ) ;

return 0 ;
}

If you experiment with freeing a data structure twice you will most cer-
tainly run in to a segmentation fault and a core dump. The reason is that
the underlying implementation of malloc and free assume that things are
structured in a certain way and when they are not things break. Remem-
ber that by de�nition the behavior is unde�ned so you can not rely on that
things will crash when you test your system.

To see what is going on (and this will di�er depending on what operating
system you're using) we can look at the location just before the allocated
data structure. We will here use calloc() that will not only allocate the
data structure but also set all its elements to zero. Try the following, also
print the memory map as before.

long *heap = (unsigned long *) c a l l o c (40 , s izeof (unsigned long ) ) ;

p r i n t f ( "heap [ 2 ] : 0x%lx \n" , heap [ 2 ] ) ;
p r i n t f ( "heap [ 1 ] : 0x%lx \n" , heap [ 1 ] ) ;
p r i n t f ( "heap [ 0 ] : 0x%lx \n" , heap [ 0 ] ) ;
p r i n t f ( "heap [ −1 ] : 0x%lx \n" , heap [ −1 ] ) ;
p r i n t f ( "heap [ −2 ] : 0x%lx \n" , heap [ −2 ] ) ;

So we're cheating and access position -1 and -2. As you see there is
some information there. Now change the size of the allocated data structure
and see what's happening. One thing you might wonder is how free knows
the size of the object that it is about to free - any clues?

Now look at this - we're going to free the allocated space but then we
cheat and print the the content. Add the following below the code we have
above.

f r e e ( heap ) ;

p r i n t f ( "heap [ 2 ] : 0x%lx \n" , heap [ 2 ] ) ;
p r i n t f ( "heap [ 1 ] : 0x%lx \n" , heap [ 1 ] ) ;
p r i n t f ( "heap [ 0 ] : 0x%lx \n" , heap [ 0 ] ) ;
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p r i n t f ( "heap [ −1 ] : 0x%lx \n" , heap [ −1 ] ) ;
p r i n t f ( "heap [ −2 ] : 0x%lx \n" , heap [ −2 ] ) ;

Has something changed? Is it just garbage or can you identify what it
is? Take a look at the memory map, what is happening?

4 A shared library

When we �rst printed the memory map there was of course a lot of things
that you had no clue of what they were. One after one we have identi�ed the
segments for the code, data, strange kernel stu�, stack and the heap. There
has also been a lot of junk in the middle, between the heap and the stack.
Some of the segments are executable, some are writable, some are described
by something similar to:

/lib/x86_64-linux-gnu/ld-2.23.so

All of the segments are allocated for shared libraries, either the code or
areas used for dynamic data structures. We have been using library proce-
dures for printing messages, �nding the process identi�er and for allocating
memory etc. All of those routines are located somewhere in these segments.
The malloc procedures keep information about the data structures that we
have allocated and freed and if we mess this up by freeing things twice of
course things will break. If you do these experiments early in the course you
might not know at all what we're talking about, but it will all become clear.

5 Summary

You can learn allot about how things work by running very small experi-
ments. You should test things for yourself and experience the things you
learn in the course. It's one thing reading about a segmentation fault on a
slide, and another experience it by writing a small program. Remember the
golden rule of engineering:

If In Doubt, Try It Out!
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