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Getting started

This is a small tutorial that lets you explore signals in a Linux environment.
You need access to a Unix machine and know how to use the C compiler.
The small examples that you will implement are not rocket science but if you
have done them once, it will hopefully help you understand the operations
of the operating system and how it can control processes.

Note - the examples that are given in this tutorial are probably nothing
that you will ever use in regular programming. Some are even things that
you should never do; the examples are here to help you gain a better under-
standing of what is going on under the hood i.e. how the operating system
can interact with running programs.

1 Signals

Signals are primarily used by the operating system to signal to processes that
something has happened that probably needs some attention. It could also
be used in between processes or even inside a process to raise an exception.

If you open a shell you can list all possible signals by using the command
kill. As you see there are quite many, but don't be afraid, you do not have
to learn them by heart.

> kill -l

You might have used the kill command when you wanted to kill a
process but the command will be able to send any signal to a process. When
no signal is given the SIGTERM signal is sent to the process. You might have
learned to write kill -9 when you really wanted to kill something; what is
signal number 9 called?

When you hit ctrl-c in a terminal window, the shell will send a INT

(interrupt) signal to the foreground processes. There is some magic taking
place when you're running a program in a shell and the ctrl-c will terminate
the program but not the shell; all will be crystal clear ... in a couple of weeks.

To learn a bit more about how signals work we will write small examples
and see how they behave.
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2 catching a signal

Normally when you run a program the process inherits the default signal
handlers of its creator. The process can then set its own signal handlers to
change the behavior of the process. One example is when a process wants to
do some �nal things before terminating when it receives the SIGTERM signal.

#include <s td i o . h>
#include <s i g n a l . h>
#include <unis td . h>

int volat i le count ;

void handler ( int s i g ) {
p r i n t f ( " s i g n a l %d ouch that hurt \n" , s i g ) ;
count++;

}

int main ( ) {

struct s i g a c t i o n sa ;

int pid = getp id ( ) ;

p r i n t f ( "ok , l e t ' s go , k i l l me (%d) i f you can ! \ n ' ' , pid )

sa . sa_handler = handler ;
sa . sa_f lags = 0 ;
s igemptyset (&sa . sa_mask ) ;

i f ( s i g a c t i o n (SIGINT , &sa , NULL) != 0) {
re turn ( 1 ) ;

}

whi l e ( count != 4) {
}

p r i n t f ( " I ' ve had enough ! \ n " ) ;
r e turn ( 0 ) ;

}

Copy this program, call it test1.c, compile and execute it in a terminal.
In this terminal try to kill it by hitting ctrl-c. The program does not do
very much besides trying to stay alive.

If we take a look at how it achieves this we see that it uses a sigaction
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structure and a call to sigaction. The structure holds some parameters to
control what will happen. We will set the sa_handler property to point to
our own handler procedure. We will then clear the sa_mask entry because
we do not want to block any other signals when we're in the handler.

The interesting thing is the call to sigaction, here we pass three argu-
ments: the signal we want to handle, a pointer to the sigaction structure and
a null pointer (that we don't have to bother about now). This is the library
call that will change our signal table and when a INT signal is sent we will
be able to do what we want.

The signal handler itself will in this example not do anything useful, only
print a message so that we know that it was invoked. Note that one should
not use a system library call such as printf inside a handler since this might
be in con�ict with an ongoing library call. We do so in this exercise to keep
things as simple as possible.

Run the program and do some experiments; can you kill it by sending
a kill -SIGINT from another terminal. What happens if you send it a
SIGTERM signal?

Look up kill and sigaction using the man command. There is probably
a lot more here than you would ever want to know but you should get the
habit of reading the man pages.

This is the simple way to catch a signal; using a slightly di�erent tech-
nique we can get some more information on what is going on.

3 catch and throw

In Java you're quite used to declaring what exception methods could cause
and you could always trap them in an exception handler to possibly do
something else. When you're programming in C there is no such support in
the language, but it turns out that you can use signals to handle exceptions.

Let's catch any exception caused by division by zero. The handler will
simply print an error message and then exit but we could of course have
done something to save the situation.

#include <s t d l i b . h>

void handler ( int s i g ) {
p r i n t f ( " s i g n a l %d was caught\n" , s i g ) ;
e x i t ( 1 ) ;
return ;

}

We need to install the handler and do so by registering it under the
SIGFPE signal. Then we call a not so good procedure that will divide by zero
(note, it's integer division so it will generate a fault).
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int not_so_good ( ) {
int x = 0 ;
return 1 % x ;

}

int main ( ) {
struct s i g a c t i o n sa ;

p r i n t f ( "Ok, l e t ' s go − I ' l l catch my own e r r o r . \ n" ) ;

sa . sa_handler = handler ;
sa . sa_f lags = 0 ;
s igemptyset (&sa . sa_mask ) ;

/* and now we catch . . . FPE s i g n a l s */
s i g a c t i o n (SIGFPE, &sa , NULL) ;

not_so_good ( ) ;

p r i n t f ( "Wil l probably not wr i t e t h i s . \ n" ) ;
return ( 0 ) ;

}

You might ask yourself how a division by zero is detected as a fault and
how it is turned into a signal to the user process. The fault is �rst detected
by the hardware; when the instruction is executed an exception is raised.
The CPU will then look in an Interrupt Descriptor Table (IDT) and jump to
a location in memory that hopefully contains some code that will take care
of the problem. This code is part of the kernel so the kernel decides what to
do. In the case of a division by zero the user process that generated the fault
must of course be interrupted. If the process has registered its own SIGFPE

handler, as in the case above, control is passed to this function; the default
procedure is to kill the process.

4 who do you think you are

If we use the simple version of signal handler then there is not much in-
formation to go on; a signal has been sent but we don't know much more.
We can however use a slightly more elaborate call that gives us some more
information. To use this version we set a �ag in the sigaction structure.

int main ( ) {

struct s i g a c t i o n sa ;
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int pid = getp id ( ) ;

p r i n t f ( "Ok, l e t ' s go − k i l l me (%d ) . \ n" , pid ) ;

/* we ' re us ing the more e l a bo ra t e d s i g a c t i o n hand ler */
sa . sa_f lags = SA_SIGINFO;
sa . sa_s igac t i on = handler ;

s igemptyset (&sa . sa_mask ) ;

i f ( s i g a c t i o n (SIGINT , &sa , NULL) != 0) {
return ( 1 ) ;

}

while ( ! done ) {
}

p r i n t f ( "Told you so ! \ n" ) ;
return ( 0 ) ;

}

Nothing strange there, but now the handler will be passing three argu-
ments: the signal number, a pointer to a siginfo_t structure and a pointer
to a context that we can ignore for a while.

int volat i le done ;

void handler ( int s i g , s i g i n f o_t * s i g i n f o , void * context ) {

p r i n t f ( " s i g n a l %d was caught\n" , s i g ) ;

p r i n t f ( "your UID i s %d\n" , s i g i n f o−>si_uid ) ;
p r i n t f ( "your PID i s %d\n" , s i g i n f o−>si_pid ) ;

done = 1 ;
}

The siginfo_t structure contains information about the process that
sent the signal. If you start this program in one shell and then try to kill
it from another shell (using kill -SIGINT) you should hopefully be able to
tell which process that tried to kill you.
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5 don't do this at home

While the siginfo_t structure will give you more information about why
the signal was generated the context provided in the third argument will
give you more information about the environment in which the signal was
generated.

The code below is nothing you should ever write and it's probably some-
thing that should never be used as an example but it shows what you can
do when you go under the hood of regular C programming. We shall do
something as stupid as trying to handle a fault when an illegal instruction
is executed.

The context that is provided to a signal handler is the complete environ-
ment of the thread that caused the fault. This environment holds among
other things the program counter i.e. in our case the address that causes
the fault. When we have done what we should in the signal handler, control
is passed back to the thread that will start the execution on the address of
the program counter. What would happen if we help the thread a bit and
advance the program counter to the next address?

#define _GNU_SOURCE /* to d e f i n e REG_RIP */

#include <s td i o . h>
#include <s i g n a l . h>
#include <ucontext . h>

stat ic void handler ( int sig_no , s i g i n f o_t * i n fo , void * cntx )
{

ucontext_t * context = ( ucontext_t *) cntx ;
unsigned long pc = context−>uc_mcontext . g r eg s [REG_RIP ] ;

p r i n t f ( " I l l e g a l i n s t r u c t i o n at 0x%lx value 0x%x\n" , pc , * ( int *) pc ) ;
context−>uc_mcontext . g r egs [REG_RIP] = pc+1;

}

To achieve this we de�ne the macro _GNU_SOURCE that will make the
header �le ucontext.h include a de�nition of the constant REG_RIP. Note
that we're now doing things that are hardware dependent and we are now
assuming a 64-bit Linux, if you run a 32-bit version you could try using
REG_EIP instead.

So now let's register the handler under the SIGSEGV signal and run the
program into a sequence of faulty operations. Will we ever hit the printf
statement?

int main ( )
{
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struct s i g a c t i o n sa ;
sa . sa_f lags = SA_SIGINFO;
sa . sa_s igac t i on = handler ;

s igemptyset (&sa . sa_mask ) ;

s i g a c t i o n (SIGSEGV, &sa , NULL) ;

p r i n t f ( "Let ' s go ! \ n" ) ;

/* t h i s i s noth ing you shou ld ever do */
asm( " . word 0x00000000" ) ;

here :
p r i n t f ( " Piece o f cake , t h i s c a l l i s here %p ! \ n" , &&here ) ;
return 0 ;

}

The example above is of course absurd, to advance the program counter
in the hope of �nding an executable instruction could of course lead us
anywhere.

6 summary

Signals is the mechanism that the kernel uses to inform processes about
exceptions in the normal execution. If the user process has not stated oth-
erwise, the kernel will decide what to do. The user process can register a
signal handler to decide what to do. The kernel will then pass control to a
speci�ed procedure.

Signals can also be used in between processes, to send noti�cations to,
or control processes. The signals themselves contain no information, but the
kernel can provide more information about who sent the signal and possibly
why.
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