
Segmenting a memory

Johan Montelius

HT2021

1 Introduction

In this exercise you will create a small framework to handle allocation of
arrays. The way we solve it is a bit over-kill since we could have used
malloc() and free() directly but to learn a bit about segmentation it serves
its purpose.

The scenario we have is that we will be given a memory that will be used
when an array is created. The array will have its own header structure with
information about its size etc but the content of the array will be in the
shared memory.

When a new array is created we need to �nd a segment in the memory
that should be allocated to the array. In order to do this we need to keep
track of which arrays that have been created and which segments in the
memory that they use.

In the beginning the arrays we create will simply take memory locations
after each other. Once we start to delete arrays the picture becomes more
complicated. The memory will become fragmented with segments that are
still used and between them areas that are free to grab.

If the memory system is asked to create an array but can not �nd any
memory area that is big enough we have a problem. We will then try to
solve it by compacting the segments that are in use.

2 Memory and arrays

Let's start with de�ning a small memory area and an array data structure.
The array structure will hold the size of the array and a pointer to its �rst
position in the shared memory. It will also hold a pointer to the next array
structure since we will keep track of all arrays that we create in a linked list.

#define MEMORY 100 // s i z e o f memory

int memory [MEMORY] ; // the memory

typedef struct array {
int s i z e ; // the s i z e o f the array
int * segment ; // po in t e r to the a l l o c a t e d memory segment
struct array * next // po in t e r to next array

} array ;

1

We could have simply de�ned one global variable allocated that would
either be a null pointer or pointing to the �rst element in the linked list
of allocated arrays. We would then always have some special cases in our
code to detect if the list was empty or if we are looking at the last element.
Therefore we will make use of two faked elements, the �rst one called dummy

and the last one sentinel. So when we set up the initial list we let dummy
point to sentinel and the variable allocated point to dummy.

array s e n t i n e l = {0 , &memory [MEMORY] , NULL} ;
array dummy = {1 , &memory [−1] , &s e n t i n e l }
} ;

array * a l l o c a t e d = &dummy;

The dummy array element has a size of one and its memory segment
starts at memory[-1]. This is of course crazy wince we do not want to store
anything at this position but we will never use this array. The important
thing is that we can calculate the next, possibly free, memory location by
taking the address of the segment and add the size of the array. We would
then point to memory[0].

The next element in the list is the sentinel and its memory segment
starts at memory[MEMORY] that is one position outside the actual memory
data structure (remember that arrays in C are 0 indexed so an array of size
MEMORY would run from zero to MEMORY − 1). This is also very
strange but we ill never use the sentinel array either.

The trick is that we can now look at the �rst element and the following
one (i.e. the sentinel) and determine that the memory area from memory[0]

to memory[MEMORY -1] is free to use. This is an invariant we will uphold in
the list; by looking at two consecutive elements we can determine if and how
much free memory there is between them.

Sound strange? You will understand how it works when we use this
property.

3 Operations on the list

Let's start with a procedure that will help you see what is happening in
the list. We run through the list and print information about each element.
Notice how we print the segment pointer, by subtracting memory they are
much easier to interpret and compare to the sizes.

void check () {
array *nxt = a l l o c a t e d ;
while (nxt != NULL){

p r i n t f (" array (%p) : s i z e %2d , segment %3d , next %14p \n" ,
nxt ,

2

nxt−>s i z e ,
nxt−>next ,
(int) (nxt−>segment − memory)
) ;

nxt = nxt−>next ;
}
return ;

}

You should already now write a small main procedure and compile the
program you have so far. It's easier to detect the bugs as you go instead of
waiting to the end and the start to correct everything.

int main () {
check () ;
return 0 ;

}

You should then implement a procedure that allocates a new array. We
do it step by step since this is the most complicated code. The overall
structure look like this:

array * a l l o c a t e (int s i z e) {
array *nxt = a l l o c a t e d ;

while (nxt−>s i z e != 0){
i f ((nxt−>next−>segment − (nxt−>segment + nxt−>s i z e)) >= s i z e) {

:
:

}
nxt = nxt−>next ;

}

return NULL;
}

When we're give a size and are asked to allocate an array we run through
the list starting at allocated until we hit the sentinel. We know that it is
the sentinel since its size is zero. If we hit the sentinel without �nding room
for the new array we return NULL.

To determine if there is room for a new segment we look at the current
array (nxt) and its successor (nxt->next). We then apply the trick of in-
specting the segment addresses to calculate the free space in between the
segments. If this space is equal or larger then size then we have found room
for the segment we need.

So what do we do when we �nd room for a new array; the �rst thing we
do is allocate a new array structure on the heap using malloc(). We then

3

initialize the �elds and insert the new element in the linked list and return
the array.

array *new = (array *) mal loc (s izeof (array)) ;

new−>s i z e = s i z e ;
new−>segment = (nxt−>segment + nxt−>s i z e) ;
new−>next = nxt−>next ;
nxt−>next = new ;
return new ;

You might now wounder if we take care of the case that the list is empty
or we should add a new entry in the end of the list bu this is where the
dummy and sentinel elements saves us. We will always insert a new block
between two existing blocks.

We will also use a wrapper procedure called create(). This procedure
will simply call allocate() and print an error message if an allocation could
not be made.

array * c r e a t e (int s i z e) {
p r i n t f (" c r e a t e an array o f s i z e %4d . . " , s i z e) ;
array *new = a l l o c a t e (s i z e) ;
i f (new == NULL) {

p r i n t f ("out o f memory\n") ;
e x i t (−1);

}
p r i n t f ("done\n") ;
return new ;

}

The next procedure we need is a procedure that removes an allocated
array. To do this we simply run through the list and search for the element
in question. Since we know that we will never remove the �rst nor the last
element the code becomes quite straight forward:

void de l e t e (array * ar r) {
p r i n t f (" d e l e t e array (%p) o f s i z e %4d" , arr , arr−>s i z e) ;
array *nxt = a l l o c a t e d ;
array *prev = NULL;

while (nxt != ar r){
:

}
:
:

p r i n t f ("done\n") ;
return ;

4

}

Fill in the blanks, unlink the array and don't forget to free() the array
data structure.

The two last procedures are to read and write values to an array. belts.
Like sensible people we want our high level arrays to be one indexed. Let's
keep it simple to begin with and run without safety:

void s e t (array * arr , int pos , int va l) {
arr−>segment [pos−1] = va l ;

}

int get (array * arr , int pos) {
return arr−>segment [pos −1] ;

}

Mission complete, lets take it for a spin.

4 A �rst test

Let's write a small test to see that we can work with our arrays. We will
create two arrays, do some operations and then delete them.

void bench1 () {

check () ;
array a* = cr ea t e (2 0) ;

check () ;
array b* = cr ea t e (3 0) ;

check () ;
s e t (a , 10 , 110) ;
s e t (a , 14 , 114) ;

s e t (b , 8 , 208) ;
s e t (b , 12 , 212) ;

p r i n t f (" a [1 0] + a [1 4] = %d\n" , get (a , 1 0) + get (a , 1 4)) ;
p r i n t f (" b [8] + b [1 2] = %d\n" , get (b , 8) + get (b , 1 2)) ;

d e l e t e (a) ;
check () ;
d e l e t e (b) ;
check () ;

}

5

If this works we can do something more complicated. Let's see if we can
�nd room for a small segment in between two segments. We will �rst create
three arrays, delete the middle one and then create a new array.

void bench2 () {

array *a = c r ea t e (2 0) ;
array *b = c r ea t e (3 0) ;
array *c = c r ea t e (3 0) ;
check () ;
d e l e t e (b) ;
check () ;
array *d = c r ea t e (2 0) ;
check () ;
d e l e t e (a) ;
d e l e t e (c) ;
d e l e t e (d) ;

}

5 Base and bounds

So far we do not check if the set and get procedures are valid operations.
We can do very strange things as the following example shows:

void bench3 () {
array *a = c r ea t e (2 0) ;
array *b = c r ea t e (3 0) ;

s e t (a , 22 , 100) ;
s e t (b , 0 , 200) ;

p r i n t f ("a [2 0] + b [2] = %d\n" , get (a , 2 0) + get (b , 2)) ;

d e l e t e (a) ;
d e l e t e (b) ;

}

This example shows the danger of not checking the bounds of the allo-
cated segment. Change the implementation of set() and get() so that they
check that the position is a legal value i.e. not larger than the size of the
array nor zero or smaller.

If this is the case you should print an error message stating that an "seg-
mentation fault" has occurred and then call exit(-1). When you program
in C you will often see a message "segmentation fault (core dumped)" and

6

this is exactly what is happening, your trying to address a location that is
not inside the segments that have been allocated to your program.

6 More problems

One thing we could take a look at is a shortcoming of our current implemen-
tation. Take a look at the following benchmark:

void bench4 () {
array *a = c r ea t e (2 0) ;
array *b = c r ea t e (3 0) ;
array *c = c r ea t e (3 0) ;
d e l e t e (b) ;
check () ;
array *d = c r ea t e (5 0) ;

d e l e t e (a) ;
d e l e t e (c) ;
d e l e t e (d) ;

}

We fail but do we have to fail? If you look at the segments you see that
we have one segment allocated at position 0 of size 20 and another one at
position 50 of size 30. We thus have 20 slots free between the two segments
and 30 slots free after the second segment. With 50 free the memory is hardly
full, the problem is that it is fragmented (external fragmentation, areas that
have not been allocated but all too small to be used).

We can try to �x this problem by moving the second segment closer to
the �rst segment. This would free up 50 slots after the second segment and
give room for the third array. We implement this by doing a compaction of
all segments that we have allocated.

A compaction is actually quite easy to do. We know that the �rst seg-
ment is the dummy segment so this should not be touched but for all other
segments apart from the sentinel we move its content closer to its predeces-
sor.

void compact () {

array *prev = a l l o c a t e d ;
array *nxt = prev−>next ;

while (nxt−>s i z e != 0) {
for (int i = 0 ; i < nxt−>s i z e ; i++) {

prev−>segment [prev−>s i z e + i] = . . . ;
}

7

nxt−>segment = ;
prev = nxt ;
nxt = nxt−>next ;

}
}

Fill in the dotted lines; think about what needs to be done. You should
read each element in an array and place it immediately after the segment of
the previous array. When you're done you update the segment pointer to
point at the �rst element at the new position.

Once you think you have this working we change the implementation of
the procedure create(). How about this:

array * c r e a t e (int s i z e) {
p r i n t f (" c r e a t e an array o f s i z e %4d\n" , s i z e) ;
array *new = a l l o c a t e (s i z e) ;
i f (new == NULL) {

p r i n t f (" . . almost panic , time f o r gc\n") ;
compact () ;
check () ;
new = a l l o c a t e (s i z e) ;

}
p r i n t f (" . . pray f o r the bes t . . ") ;
i f (new == NULL) {

p r i n t f (" panic ! memory f u l l \n") ;
e x i t (−1);

}
p r i n t f (" . . . yes ! \ n") ;
return new ;

}

The compaction that we do is a form of garbage collection used in many
programming languages such as Java, Haskell or Erlang. A general garbage
collector is much more complicated since we need to move data structures
that have references to other data structures. These should then also be
moved but what if they already have been moved :-0

8

