
Ready, blocked or done

Johan Montelius

HT2021

1 Introduction

Your task is to simulate a scheduling algorithm as we re�ne it from something
that does hardly anything to something that is almost useful.

2 Jobs and queues

Our scheduler will keep track of a set of jobs that will be in either of three
lists: ready, blocked and done. All jobs will be created from start and
placed in the list of blocked jobs. The simulator will in each iteration:

� unblock jobs that are ready to run by moving them from the blocked
list to the running list,

� schedule one job from the ready list for execution and

� depending on the result move it to either of the three lists.

The jobs that the simulator will handle will of course not do anything.
The simulator only knows how much time a job needs to complete its tasks
and, as we extend the simulator, how often it will do an I/O operation.
The simulator will collect statistics and will in the end be able to answer
questions such as turnaround time and respons time for each of the jobs.

We de�ne a structure to represent jobs and we will keep it simple to start
with. The only properties we are interested in right now are: arrival time,
unblock time, total execution time and ratio of I/O operations.

typedef struct job {
int id ;
int a r r i v a l ;
int unblock ;
int exect ime ;
f loat i o r a t i o ;
struct job *next ;

} job ;

The unblock time will initially be set to a value that speci�es when the
job arrives to the system. If the job is blocked as a result of a I/O operation
the value will indicate when the operation is completed and the job could

1



again be scheduled. The unique identi�er is something that we will create
when we initiate the simulation.

To quickly set up a benchmark we also de�ne a structure that describes
the di�erent jobs that we should use.

typedef struct spec {
int a r r i v a l ;
int exect ime ;
f loat i o r a t i o ;

} spec ;

The initialization could then look like follows; we create a global array
with 10 jobs and one dummy speci�cation in the end. The jobs could be given
in any order although they are here listed in the order that they arrive.

spec spec s [ ] = {
{ 0 , 10 , 0 . 0} ,
{ 0 , 30 , 0 . 7} ,
{ 0 , 20 , 0 . 0} ,
{ 40 , 80 , 0 . 4} ,
{ 60 , 30 , 0 . 3} ,
{120 , 90 , 0 . 3} ,
{120 , 40 , 0 . 5} ,
{140 , 20 , 0 . 2} ,
{160 , 10 , 0 . 3} ,
{180 , 20 , 0 . 3} ,
{0 , 0 , 0} // dummy job

} ;

We have the three queues as global pointers and they are of course all
null pointers to start with.

job * readyq = NULL;
job *blockedq = NULL;
job *doneq = NULL;

The �rst thing the simulator should do is to go through the speci�cations
and create jobs that are added to the queue of blocked jobs.

void i n i t ( ) {
int i = 0 ;
while ( spec s [ i ] . exect ime != 0 ) {

job *new = ( job *) mal loc ( s izeof ( job ) ) ;
new=>id = i +1;
new=>a r r i v a l = specs [ i ] . a r r i v a l ;
new=>unblock = specs [ i ] . a r r i v a l ;
new=>exect ime = specs [ i ] . exect ime ;
new=>i o r a t i o = specs [ i ] . i o r a t i o ;

2



block (new ) ;
i++;

}
}

When we add the jobs to the blocked queue we order them so that the
jobs with the lowest arrival time are �rst.

void block ( job * t h i s ) {
job *nxt = blockedq ;
job *prev = NULL;

while ( nxt != NULL) {
i f ( th i s=>unblock < nxt=>unblock ) {
break ;

} else {
prev = nxt ;
nxt = nxt=>next ;

}
}
th i s=>next = nxt ;
i f ( prev != NULL) {

prev=>next = th i s ;
} else {

blockedq = th i s ;
}
return ;

}

The simulator will keep track of time and move jobs from the blocked
queue to the ready queue. Since the jobs are ordered we do not have to
search through the whole queue. A printout will trace what is happening.

void unblock ( int time ) {
while ( blockedq != NULL && blockedq=>unblock <= time ) {

job *nxt = blockedq ;
blockedq = nxt=>next ;
p r i n t f ( "(%4d) unblock job %2d\n" , time , nxt=>id ) ;
ready ( nxt ) ;

}
}

In the �rst run we simply add jobs at the end of the ready queue. This
might not be optimal but why complicate things.

void ready ( job * t h i s ) {
job *nxt = readyq ;

3



job *prev = NULL;
while ( nxt != NULL ) {

prev = nxt ;
nxt = nxt=>next ;

}
th i s=>next = nxt ;
i f ( prev == NULL) {

readyq = th i s ;
} else {

prev=>next = th i s ;
}
return ;

}

When jobs have terminated they are added to the done list. The order
in this list is not important so we might as well add them to the beginning.

void done ( job * t h i s ) {
th i s=>next = doneq ;
doneq = th i s ;
return ;

}

3 The scheduler

The scheduler's job is to select the �rst job from the ready queue and let it
�execute�. Since this is only a simulation and the jobs do not do anything,
we simply set the remaining execution time to zero and move it to the list of
terminated jobs. Note - we now allow jobs to execute until they terminate,
there is no preemption.

int schedu le ( int time ) {
i f ( readyq != NULL) {

job *nxt = readyq ;
readyq = readyq=>next ;

int exect = nxt=>exect ime ;
nxt=>exect ime = 0 ;
p r i n t f ( "(%4d) run job %2d f o r %3d ms\n" , time , nxt=>id , exect ) ;
done ( nxt ) ;
return exect ;

} else {
return 1 ;

}
}

4



The schedule() procedure returns how long time has passed and for this
simple scheduler it is the total execution time of the job. If there is no job
in the ready queue we return 1 to drive the simulation forward (why would
the ready queue be empty?).

The procedure does not right now need to know the time but we will
need it later and for now we can use it to do the printout.

So now we have all the pieces to the puzzle and can create our �rst
scheduler and take it for a spin. Remember to include the right header �les
in the beginning and that you need to order the procedures (or declare them)
so that you do not use a procedure before it is declared.

int main ( ) {
i n i t ( ) ;
int time = 0 ;
while ( blockedq != NULL | | readyq != NULL) {

unblock ( time ) ;
int t i c k = schedu le ( time ) ;
time += t i c k ;

}
p r i n t f ( "\ n to t a l execut ion time i s %d \n" , time ) ;
return 0 ;

}

I hope it worked, now let's add some more features to the scheduler.

4 Shortest job �rst

The �rst thing we might try is to adopt the shortest job �rst strategy. Ev-
erything will look the same but when we add jobs to the ready queue we
order them so that the shortest jobs occur �rst.

If you add a test to the ready() while-loop you should be able to do
it in no time. The result is of course not immediately visible since the
total execution time is the same. What could have improved in the average
turnaround time.

To check if this is the case we add a �eld to the job structure.

typedef struct job {
:

int turnaround ;
:

} job ;

In the schedule() procedure we now calculate the turnaround time.

:
nxt=>turnaround = time + exect = nxt=>a r r i v a l ;

:

5



In the main procedure we can then run through all the jobs in the done
queue and collect the average turnaround time.

:
int turnaround = 0 ;
int j obs = 0 ;

for ( job *nxt = doneq ; nxt != NULL; nxt = nxt=>next ) {
jobs += 1 ;
turnaround += nxt=>turnaround ;

}

p r i n t f ( "\ naverage turnaround : %d \n" , turnaround/ jobs ) ;
:

Try with and without ordering the ready queue, any di�erence?

5 preemptive scheduling

What is the respons time for each of the jobs? The respons time is the time
from arrival until scheduled so let's keep track of this. We add another �eld
to the job structure.

typedef struct job {
:

int respons ;
:

} job ;

Then we make sure that this �eld is zero when we create new jobs in the
init() procedure. We set it to zero in the initalization and when the job
is scheduled we calculate the respons time. In the end we can calculate the
average respons time for all jobs.

Is there something we can do to improve the respons time? How about
moving to a preemptive scheduler? Let's provide an argument to the sim-
ulator that sets the time slot that we will give each job. We then pass this
parameter to the schedule() procedure.

int main ( int argc , char *argv [ ] ) {

int s l o t = 10 ;

i f ( argc == 2) {
s l o t = a t o i ( argv [ 1 ] ) ;

}
:

6



while ( blockedq != NULL | | readyq != NULL) {
:

int t i c k = schedu le ( time , s l o t ) ;
:

}
:

The execution time of a job will be updated to hold the time to comple-
tion. Every time we schedule a job we �rst check if the time to completion
is less or equal to the time slot given. If this is so, the code is very similar
to before. If however, the time to completion is larger than the time slot we
should decrement the time and return the job to the ready queue.

We will use a zero to indicate that the respons time has not yet been set
(this is something we will use later)

In the schedule() procedure we can now check if it is the �rst time that
the job is scheduled, and if so �ll in the respons time as the current time
minus the arrival time.

Note that we now will have to check if the respons time has already been
set. If the respons time is still zero we know that it is the �rst time the job
is scheduled and we update the value.

This is what it could look like:

:
i f ( nxt=>respons == 0)

nxt=>respons = time = nxt=>a r r i v a l ;

int l e f t = nxt=>exect ime ;
int exect = ( l e f t < s l o t ) ? l e f t : s l o t ;

nxt=>exect ime == exect ;
p r i n t f ( "(%4d) run job %2d f o r %3d ms " , time , nxt=>id , exect ) ;

i f ( nxt=>exect ime == 0) {
nxt=>turnaround = time + exect = nxt=>a r r i v a l ;
p r i n t f ( " = done\n" ) ;
done ( nxt ) ;

} else {
ready ( nxt ) ;
p r i n t f ( " = %3d l e f t \n" , nxt=>exect ime ) ;

}
return exect ;

If you try with a time slot of 100 everything will work as before since no
job has an execution time greater the 90. If you decrease the time slot you
will see more scheduling events and you might see the respons time improve.

7



6 I/O operations

So now for the last problem, what happens if a job performs an I/O opera-
tion? Let's say that an I/O operation takes 30 ms to complete and some of
the jobs will do an operation every ones in a while. We will �rst extend our
simulation to handle I/O operations and then try to do a smarter scheduler.

We assume that all I/O operations take 30 ms and de�ne this a macro.
We also write a small routine that will �ip a coin and determine if, given the
I/O ratio of the job, an I/O operation is performed. If no I/O operation is
performed it returns zero, otherwise it returns how long time passes before
the operation happens (from 1 to exect -1). We will not use this information
now but we will need it later.

#define IO_TIME 30

int io_op ( f loat r a t i o , int exect ) {
int i o = ( ( f loat ) rand ( ) ) /RAND_MAX < ra t i o ;
i f ( i o )

i o = ( int ) trunc ( ( ( f loat ) rand ( ) ) /RAND_MAX * ( exect = 1) ) + 1 ;
return i o ;

}

In order to compile this you need to include stdlib.h and compile with
the math library using the �ag -lm.

Once we have this in place we can modify the schedule() procedure.
Note that we are not doing anything else while the job is doing the I/O
operation. The procedure will simply return the execution time plus the
time it took to do the I/O operation.

:
int i o = 0 ;

i f ( exect > 1 ) {
i o = io_op ( nxt=>io r a t i o , exect ) ;

}

nxt=>exect ime == exect ;
p r i n t f ( "(%4d) run job %2d f o r %3d ms " , time , nxt=>id , exect ) ;

i f ( nxt=>exect ime == 0) {
nxt=>turnaround = time + exect = nxt=>a r r i v a l ;
p r i n t f ( " = done\n" ) ;
done ( nxt ) ;

} else {
i f ( i o ) {

ready ( nxt ) ;

8



p r i n t f ( " = %3d l e f t = I /O \n" , nxt=>exect ime ) ;
exect += IO_TIME;

} else {
ready ( nxt ) ;
p r i n t f ( " = %3d l e f t \n" , nxt=>exect ime ) ;

}
}
return exect ;

Give it a try and see what happens. The total execution time will prob-
ably increase and this is quite understandable, we're sitting around waiting
for I/O operations. Is there something we can do?

7 Block jobs until I/O completed

A CPU is basically doing nothing while an I/O operation is done. To just sit
around and wait is a complete waste of time. If we could schedule another
job in the mean time, we would improve the situation. How about moving
jobs back to the blocked queue until they are ready to execute again.

It turns out that we have all pieces to the puzzle to do this so we only
have to change the scheduler slightly. First we set the execution time to
what ever the io_op() function returns (if it is di�erent from zero).

i f ( exect > 1 ) {
i o = io_op ( nxt=>io r a t i o , exect ) ;
i f ( i o ) {

exect = io ;
}

}

Then we change what we do if an I/O operation was issued. We set the
unblock value of the job and return it to the queue of blocked jobs instead
if the ready queue. We also patch the print out to see what is happening.

i f ( i o ) {
nxt=>unblock = time + exect + IO_TIME;
block ( nxt ) ;
p r i n t f ( " = %3d l e f t = blocked \n" , nxt=>exect ime ) ;

} else {
ready ( nxt ) ;
p r i n t f ( " = %3d l e f t \n" , nxt=>exect ime ) ;

}

9



8 What's more?

The scheduler we have now is still very simple. It keeps all jobs that are
ready to execute in one queue. The queue is ordered so that jobs that have
a short time to completion will be handled �rst. One can however question
if this always is relevant or if this information is known at all. If we do not
know the time to completion, which job should we then select for execution?
Should we have jobs with di�erent priorities, should we have several queues?
If you start to extend this scheduler you will soon end up with something
that looks like a multi-level feedback queue scheduler where jobs that do I/O
operations are given priority.

10


