
Page up and page down

Johan Montelius

HT2021

1 Introduction

In this tutorial you will implement an array allocation scheme that on the
surface behaves very much like the array framework that you implemented in
the segmentation exercise. This time you will use paging and to understand
why you �rst must recap the problems with segmentation.

The problem with segmentation is that you will end up with a fragmented
memory. Many small free memory areas that together could make up a
large part of the available memory but they are all to small to be very
useful. We could of course implement some compaction scheme but this is
not always easy and you don't want to sit around waiting for defragmentation
(remember Windows?).

To mitigate this problem we instead us a paging scheme. You will see
that it is a bit trickier and if we did not have hardware support in the CPU
we would not be able to use it e�ciently.

2 Memory and arrays

Let's start as before and de�ne a memory that we will use and what an array
structure will look like. The general idea is that the memory will be divided
into a sequence of frames and that each array will hold a page table that
holds one entry per page. To make the system more �exible we de�ne two
macros that de�nes how many frames we will have in memory and the size
of pages/frames (they are of course of the same size since a page should �t
into a frame).

#define FRAMES 64

#define SIZE 16

We have hear chosen 64 and 16 but could of course have chosen anything,
the size is however preferably a power of two. The virtual addresses will be
broken down into an o�set (where in a page) and index (which page). Since
the page size is 16 we need four bits as an o�set so we create a macro that
does a bit-wise and operation to select the four least signi�cant bits. Another
macro will shift an integer four bits to select the higher bits as page number.
index.

#define Of f s e t (addr) (addr & 0b1111)
#define PageNr (addr) (addr >> 4)

1

Note that we we do these operations we take for granted how an integer
(that will be our address) is represented binary.

We also de�ne two values, FREE and TAKEN, that we will use in a
structure that keeps track of which frames that are used. The memory itself
is represented as an array of integers.

typedef enum av a i l a b l e {FREE, TAKEN} ava i l a b l e ;

a v a i l a b l e framemap [FRAMES] ;

int memory [FRAMES*SIZE] ;

So now to the actual array; the array is represented as an array or frame
numbers i.e. the page table. We also keep track of how large this structure
is since we both want to check that we're not addressing outside of the array
bit also since we want to return all frames when we delete the array. The
page table will use −1 to indicate that no frame has yet been allocated to
the page.

typedef struct array {
int pages ;
int * pagetab le ; // an array o f frame numbers (or −1 i f not a l l o c a t e d)

} array ;

Before you continue you should have a clear picture of where we are
going. We will have a huge memory (well not that huge) that is divided
into frames. We will know, by looking in the frame map if a frame is taken
or not. An address in an array is broken down into a page number and an
o�set. A page number is translated using the page table into frame number.
Draw this on a paper, once we start to manipulate these data structures you
need to be able to visualize what we're doing.

3 Creating an array

When an array is created we need to �nd free frames to allocate to the array.
We therefore start by implementing a procedure that will search through all
frames and select the �rst one that is free. The frame is marked as taken
and the frame number is returned. If no free frame is found we return −1 to
signal that we have no more frames to o�er.

int f i nd_f r e e () {
for (int i = 0 ; i < FRAMES; i++) {

i f (framemap [i] == FREE) {
:
:

}

2

}
return −1;

}

We're now ready to allocate an array of a given size. We �rst allocate the
array itself and the page table and then allocate the frames that we need. If
we fail to �nd a free frame we need to return everything and why not then
use a delete procedure that we will de�ne later.

Fill in the dotted lines and you should soon have this up and running.

array * a l l o c a t e (int s i z e) {
int pages = s i z e / SIZE ;
int rem = s i z e % SIZE ;
i f (rem > 0)

pages += 1 ;

array *new = (array *) . . .
int * pagetab le = (int *) . . .

new−>pages = pages ;
new−>pagetab le = pagetab le ;

for (int i = 0 ; i < pages ; i++) {
new−>pagetab le [i] = −1; // no frame ye t a l l o c a t e d

}

p r i n t f (" a l l o c a t e array , frames : ") ;
for (int i = 0 ; i < pages ; i++) {
int f = . . .
i f (f == −1) {

d e l e t e (new) ;
return NULL;

}
p r i n t f ("%d " , f) ;
:

}
p r i n t f ("\n") ;
return new ;

}

To delete an array we simply reverse what find_free() does and deal-
locate the data structures.

void de l e t e (array * ar r) {
int pages = arr−>pages ;
p r i n t f (" d e l e t e array , f r e e i n g frames : ") ;

3

for (int i = 0 ; i < pages ; i++) {
i f (arr−>pagetab le [i] != −1) {

p r i n t f (" %d" , arr−>pagetab le [i]) ;
. . . = FREE;

}
}
p r i n t f ("\n") ;
f r e e (. . .) ;
f r e e (. . .) ;
return ;

}

One more wrapper function that will create a new array if possible. If we
fail we have nothing else to do but to fail the whole computation. No garbage
collector in the world would save us since no mater how we restructure the
arrays we will not be able to create more free frames.

array * c r e a t e (int s i z e) {
array *new = a l l o c a t e (s i z e) ;
i f (new == NULL) {

p r i n t f ("out o f memory\n") ;
e x i t (−1);

}
return new ;

}

We're now ready to implement the set and get operations and this will
be slightly more complicated compared to the segmentation exercise. We
�rst need to divide the "address" into the page number and the o�set. Once
this is done we check that the number is a valid page. If the page is ok, we
retrieve the frame number and access the memory location.

void s e t (array * arr , int pos , int va l) {
p r i n t f (" s e t : a r r %p pos %d va l %d\n" , arr , pos , va l) ;
int o f f s e t = Of f s e t (pos) ;
int page = PageNr (pos) ;

i f (page >= arr−>pages){
p r i n t f (" segmentat ion f a u l t \n") ;
e x i t (1) ;

}

int frame = arr−>pagetab le [page] ;
p r i n t f (" s e t : page %d o f f s e t %d frame %d\n" , page , o f f s e t , frame) ;

memory [frame*SIZE + o f f s e t] = va l ;

4

return ;
}

int get (array * arr , int pos) {
p r i n t f (" get : %p pos %d\n" , arr , pos) ;
int o f f s e t = Of f s e t (pos) ;
int page = PageNr (pos) ;

i f (page >= arr−>pages){
p r i n t f (" segmentat ion f a u l t \n") ;
e x i t (1) ;

}

int frame = arr−>pagetab le [page] ;
p r i n t f (" get : page %d o f f s e t %d frame %d\n" , page , o f f s e t , frame) ;

return memory [frame*SIZE + o f f s e t] ;
}

Will we catch all faulty addressing of the array? What if we allocate
an array of size 40 and have a page size of 16 - what will happen when we
address position 50?

4 A �rst run

I think you are ready to do a small test run of your system. Let's write a
small benchmark to see if things work.

void bench () {

array *a = c r ea t e (2 0) ;
array *b = c r ea t e (4 0) ;

s e t (a , 10 , 110) ;
s e t (a , 18 , 118) ;

s e t (b , 8 , 208) ;
s e t (b , 36 , 212) ;

p r i n t f (" a [1 0] + a [1 8] = %d\n" , get (a , 1 0) + get (a , 1 8)) ;
p r i n t f (" b [8] + b [3 6] = %d\n" , get (b , 8) + get (b , 3 6)) ;

d e l e t e (a) ;
d e l e t e (b) ;

}

5

Also try to create larger arrays than what we know we have memory
for and accessing outside o� an array. You could try to access an array
with a negative index and this will likely result in a crash. Update your
implementation to catch this error and print a nice error message.

5 Be lazy

When you know that you have things up and running it's time to do a trick
that most operating systems do. We will be as lazy as possible and only
allocate frames if they are actually needed.

Take a look at the allocate() procedure; do we really need to allocate
all frames directly. Could we wait until we see that they are actually needed?

If we wan to keep track of if a frame has been allocated or not we can
extend the page table to hold more information. We could extend the page
table entry to be a small structure that holds a status information but why
not be lazy. What if we leave all entries in the page table with the value −1?

How about this:

array * a l l o c a t e (int s i z e) {
int pages = s i z e / SIZE ;
int rem = s i z e % SIZE ;
i f (rem > 0)

pages += 1 ;

array *new = (array *) . . .
int * pagetab le = (int *) . . .

new−>pages = pages ;
new−>pagetab le = pagetab le ;

for (int i = 0 ; i < pages ; i++) {
new−>pagetab le [i] = −1; // no frame ye t a l l o c a t e d

}

return new ;
}

Now we must be very careful when we write to the array. If the page
table entry returns −1 we quickly need to �nd a free frame, insert the frame
number into the page table and then continue as if nothing has happened.
You will be able to do this with just a few lines of code.

:
i f (frame == −1) {

p r i n t f ("page f a u l t . . . ") ;

6

frame = . . .
i f (frame == −1) {

p r i n t f ("out o f memory\n") ;
e x i t (−1);

}
p r i n t f ("ok\n") ;
arr−>pagetab le [page] = frame ;

}
:

When we �x the get() procedure we realize that reading from a not yet
allocated page could return zero. There is no need to allocate a frame and
then do a read operation, the page has never been written to.

If you think that this is only a fun trick you're wrong. This is what an
operating system does every time we request more memory. It will set up
the page table correctly but will not allocate any frames unless we actually
write to the pages. As you will see we can do even more tricks by delaying
operations until they are actually needed.

6 Lazy copy

The lazy strategy can also be used when we copy an array. Why not try to
delay the copying procedure until it is actually needed. The idea is to create
a lazy copy of an array; the two array structures should share the frames.
We should still be able to read from either array; only when we write to any
of the two array structures will we create a copy but then of course only of
the page that is written to.

This will require some more book-keeping so let's extend our page table
to hold some thing that can hold more information. Let's de�ne a page table
entry and then let the array hold a proper page table.

typedef enum pte_status {ALLOCATED, LAZY, SHARED} pte_status ;

typedef struct pt_entry {
int frame ;
pte_status s t a tu s ;
struct pt_entry *copy ; // who e l s e shares the frame

} pt_entry ;

typedef struct array {
int pages ;
pt_entry * pagetab le ;

} array ;

This is much more interesting, an entry could now be either properly

7

allocated, a lazy allocation that we should �x (the −1 that we used before)
or a shared frame. If it is a shared frame we also have a pointer to the page
table entry that is the lazy copy. This will be a bit tricky so buckle up.

First you should go through your code (or why not create a copy and
work on the copy) and update the code so that it works with the new repre-
sentation of page tables entries. When we before treated it as frame number
or −1 we must now look inside the data structure to �gure out what to do.

If you look at this updated version of allocate() you will be able to
update also delete(), set() and get().

:
array *new = (array *) mal loc (s izeof (array)) ;
pt_entry * pagetab le = (pt_entry *) mal loc (s izeof (pt_entry)* pages) ;

new−>pages = pages ;
new−>pagetab le = pagetab le ;

for (int i = 0 ; i < pages ; i++) {
pt_entry * entry = &new−>pagetab le [i] ;
entry−>copy = entry ; // a t r i c k
entry−>sta tu s = LAZY;

}
:

If you can run your previous benchmarks you should be �ne. Now for
the tricky part, how do we implement copy() and what changed do we have
to do to the implementation of set(), get() and delete()?

The idea is like this, a page table entry could be in either of three states:

� ALLOCATED : a frame has been allocated for the page and the array
in the only user of the frame.

� LAZY: a frame has not yet been allocated but will be as soon as a set
or get procedure is called.

� SHARED: a frame has been allocated but the page is shared by two
or more arrays, as long as we read from the page no harm done but as
soon as we do a write operation we need to create a copy.

We write �two or more� since we of course we need to handle the case
when we have taken a copy of a copy. This will of course complicate things
since we need keep track of which other arrays share the page and when
there is only one left it should treat it as its own allocated frame.

To keep track of who else shares the frame we link all page table entries
that share a frame in a circular list. If an entry is the only entry that holds

8

a reference to the frame, i.e. ALLOCATED, the copy reference is a circular
pointer to the entry it self (this is a trick that will do our coding easier).

This sounds complicated and it is, make some drawing of what things
could look like. Also write down in your own words what should be done
when we create a copy of a page table entry.

� ALLOCATED : ... now shared ... SHARED

� LAZY : this is easy LAZY

� SHARED : ... could also share ... linked in a circular ...

When you have done some drawings you're ready to copy an array; this
skeleton code should give you a head start.

array *copy (array * o r i g) {

array *copy = (array *) mal loc (s izeof (array)) ;
pt_entry * pagetab le = (pt_entry *) mal loc (s izeof (pt_entry) * or ig−>pages) ;

int pages = or ig−>pages ;

copy−>pages = pages ;
copy−>pagetab le = pagetab le ;

for (int i = 0 ; i < pages ; i++) {
pt_entry * or ig_entry = &or ig−>pagetab le [i] ;
pt_entry *copy_entry = ©−>pagetab le [i] ;

switch (or ig_entry−>sta tu s) {
case LAZY:

copy_entry−>sta tu s = . . .
copy_entry−>copy = . . . // c i r c u l a r
break ;

case ALLOCATED:
case SHARED:

copy_entry−>frame = . . .
or ig_entry−>sta tu s = . . .
copy_entry−>sta tu s = . . .
// l i n k i n g in the c i r c u l a r s t r u c t u r e
copy_entry−>copy = . . .
or ig_entry−>copy = . . .
break ;

}
}

9

return copy ;
}

Notice that we do the same thing if the original entry is allocated or
shared. If the original entry has an allocated frame we simply mark this as
a copy and create the initial circular structure knowing that an allocated
array has a self reference in the copy �eld,

That was not that complicated and the reason is that the complicated
copying is delayed until we do a set() operation. When we do a set operation
we need to take care of the situation when two or more arrays share the same
page; if an entry is referring to an allocated page or a lazy page the situations
is as before. This is what we need to insert:

:
i f (entry−>sta tu s == SHARED) {
int f = f ind_f r e e () ;
i f (f == −1) {

d e l e t e (a r r) ;
e x i t (−1);

}

for (int i = 0 ; i < SIZE ; i++) {
memory [f *SIZE + i] = memory [entry−>copy−>frame*SIZE + i] ;

}

entry−>frame = . . .
entry−>sta tu s = . . .

// f i nd the entry t ha t i s p rev ious to entry
pt_entry *prev = entry ;
while (prev−>copy != entry) {

prev = prev−>copy ;
}
// i t shou ld now po in t to . . .
prev−>copy = . . .

// and i f i t i s po in t i n g to i t s e l f . . .
i f (prev−>copy == prev) {

prev−>sta tu s = . . .
}

}
:

Ahh, not that complicated (it took me an hour) after all? The get()

procedure does not need any changes since reading from an allocated or

10

shared frame will be the same thing. You might want to write this as a
switch statement to make it obvious but nothing special needs to be done.

The delete() procedure needs to be updated since we could now delete
an array that hols a shared frame. The procedure is then similar to the last
part in the set operation i.e. we unlink the entry from the list of copies and
if there is only one copy left that entry is changed to allocated.

The lazy copying that you have now implemented is what the operating
system does every time you do a fork().The code area id of course read only
and will be shared until either process calls exec(). The data areas will be
shared until written to but only the pages that are written to will be copied.

11

