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1 Introduction
In this assignment you’re going to implement a smart version of malloc().
The trick we will use is to store additional information about block sizes in
order for us to easily find the neighboring blocks when performing the free()
operation. You should have a good understanding of what malloc and free
should do, and preferably you should have tried to implement them.

The implementation will follow the ideas used by Doug Lea in his dl-
malloc. This was for long time the default memory allocator in Linux but
has since many years been replaced by the updated version called ptmalloc3.
The difference between our simple allocator and the more advanced schemes
is mainly in how to deal with multiple threads. The simple version that you
will implement will give you the basic idea of how things are handled.

2 The structure
The main idea is that we should be able to locate the blocks immediately
before and after a given block. The block that is located after a given block
can be found if know the size of the given block. This should be simple since
we some how need to keep track of the size of a block anyway. It’s a bit
more tricky to find the block that is located immediately before the block
since it requires that we know the size of that block. We solve this by also
keeping track of the size of this block but we have to remember to update
it.

All free blocks will be kept in a double linked list since we want to be able
to remove a block without searching for its position if we want to remove
a block. We will in the first incarnation of the implementation work with
only one list and pick the first that we find but this is something that you
could improve later.

2.1 a block

A block starts with a head structure. This header holds:

• footer : the size of the block immediately before the block

• size : the size of the block

• merge : if we can merge with the block before the block or not (M/X)
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Figure 1: Outline of block header fields

• free : if the block is free or taken (F/T)

The footer has a strange name for something that is first in a block
but if you view it as part of the block before it makes sence. In the orig-
inal description of this algorithm it is part of that block and we keep the
terminology.

The free flag tells us if the block is Free to use or Taken by a user
process. The merge flag will tell us if we could Merge the block with the
block immediately before the block. If the block immediately before the
block is taken, then we should not (X) try to merge the blocks.

A free block will have two additional fields, the two pointers needed to
link to free blocks in the freelist.

• next : a pointer to the next block

• prev : a pointer to the previous block

This all sounds easy, and so far it is, but we will complicate things -
don’t worry. We start by looking at how large the different fields need to
be. We keep things aligned on word boundaries, and a word will in our
implementation be eight bytes. Let’s store the footer in one word, the size
and flags in one word and the two pointers in one word each. The outline
of a free block of size 6 is shown in Figure 1. The first field holds the size of
the block before but since the merge flag is cleared (X) we don’t really care
what size it has.

When we hand out a block to a user we only need to preserve the size
and flags of the block so the words for the pointers could be used for user
data. We will do the regular magic trick and return a pointer to this field
and thereby hide and protect the first part of the header.
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Figure 2: A block of 5 words: free and taken

2.2 the trick

The smallest possible block is four words large since we need at least this
much space to hold the required fields. When we hand this block out to
a user only two words can be used which gives us a large overhead. This
is when we realize something and do a smart trick. The footer field of the
block after the current block is never needed when the current block has
been allocated to the user. The footer field is only used when a block should
merge with another block and no one will ever try to merge with a taken
block. We can thus use the footer field of the following block for user data.
The smallest block will thus hold three words of user data.

Let’s take a look at a free block that should be able to hold five words;
it would look like the left block block in Figure 2. If we allocate this block
we change the status, use the next and previous links and also the footer of
the block after as shown to the right in Figure 2. Also note that we clear
the merge flag of the following block.

2.3 simple allocate and free

When a block is allocated we first find a suitable block that is large enough
to serve the request of the user. In the simple case we find a block that
is the right size and can then un-link it from the double linked list. We
also need to update the status information of the block that comes after the
block that we select. This block can be found since we know the size of the
selected block. In the example with our five word block we would find the
header of the following block at an address six words away.

When we free a block we must reset this flag so also here would we have
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Figure 3: Merge a block with block before

to find the following block. If these were the only operations it would be
fairy pointless to maintain this information but we shall soon see how this
extra status flag is used.

2.4 merge blocks

If we free a block we should first take a look at the merge flag that tells us
if the block before the current block is mergeable. This can be done simply
by incrementing the size of the block before the current block and set the
footer correctly. The question is how we find the header of the block before
us but this is where the copy of the size information helps us. If the block is
mergable we should be able to trust the size information found in the footer.

In Figure 3 we see how a block of size five is merged with a free block
of size six. The resulting block has a size of 12 since we gain one word that
was used for the header. Not that the block before could not have a free
block before it. If this was the case the two blocks should have been merged
already.
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Figure 4: Merge a block with block after

Regardless if we have merged with the block before the current block or
not, we could still merge with the block after the current block. Since we
know the size of the current block we should be able to find the header of
the block after it and can then examine the status flag.

If this block is free we can merge the two blocks. In order to do this we
unlink the block from its position and instead insert the updated current
block at this position as shown in Figure 4.

If the block is not free we will not be able to do a merge operation but
we must change the state of the merge flag of the block. This is shown a in
Figure 5.

These two operations could of course be combined so from three blocks
we end up with one block. The pseudo code for the merge operation could
look as follows:
merge( current ) {

if( merge with before ) {
if ( after is free ) {

remove after from freelist
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Figure 5: No merge possible

update size of before
} else {

update size of before
set merge flag of after

}
update footer

} else {
if ( after is free ) {

update size of current
let current take position of after

} else {
set merge flag of after
place current in freelist

}
set current status to free
update footer

}
}

2.5 splitting a block

When we allocate a new block we first search through the list of free block
until we find one that is large enough to suit our needs. It could be that this
block is larger than what we need and we should then split it and leave the
part that we do not need. It is of course pointless to leave something that
is too small to handle but as long as it is large enough to form a block we
will do the split. In the structure that we have outlined the smallest block
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would hold three user data fields (one that is the footer of the next header).
If we find a block that needs to be split we perform the opposite of the

merge operation, leaving a new block in the place of the free block that we
take. The new block can be inserted at the same position and we only need
to update the footer field of the block following the block that we split. If
you look Figure 4 you will see that we do exactly the opposite of the merge
operation.

Not that the block that we leave has size 5 that is: what we had minus
what we took minus overhead for header (which is only one word).

3 the implementation
So now when you have the basic understanding of the different operations
we can start our implementation. The tricky part is getting the low level
details right i.e. how to find the blocks before and after a given block and
how to create the first block. If we get this right the rest should at least be
simpler.

Note - we will be taking many things for granted, things that might be
different depending on which hardware, compiler or operating system that
we use. We could have written our code so that it would compile on almost
any hardware but the things would be messy. We will try to keep the code
as portable as possible and state when we take things for granted.

3.1 the block

The thing that wee need to get straight is the data structure that describes
a block. We here use the fixed size type uint64_t etc. It might look a bit
redundant to reserve 2 bytes for a flag or 8 bytes for a footer but in the
end it does not matter. The footer is used by a taken block so it is not
lost space. The size and two flags need to add up to 8 bytes since we want
to hand something to the user that is 8 byte aligned. If we had done the
same exercise for a 32-bit architecture we would have represented the same
information in two 4-byte fields.
# include <stdint .h>

typedef struct block {
uint64_t footer ; // 8 bytes
uint32_t size; // 4 bytes
uint16_t merge; // 2 bytes
uint16_t free; // 2 bytes
struct block *next; // 8 bytes
struct block *prev; // 8 bytes

} block;
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We trust that the compiler will outline the block data structure in the
order that we have described them; we rely on the fact that the footer is the
first word followed by the size and flags. This should be the case with gcc
on a x86 architecture but might not be true for some strange system.

We define three constants that we will use in our low level operations.
The overhead is the size, in 8-byte words, of the fields that encode the size
and flags. The magic value is the distance from the top of the block to the
beginning of the data fields. The min value is the minimum number of data
fields in a block.
# define OVERHEAD 1
# define MAGIC 2
# define MIN 3

We start by defining procedures to hide and reveal the header of a block.
This is the same trick that is used in almost any implementation when we
wish to hide information in a header before the segment that we hand out to
the user. We here implement them as functions but in a real implementation
they would be macros, we should not waste a function call on something this
trivial.
static void *hide(block* current ) {

return (void *) (( uint64_t *) current + MAGIC );
}

static block *magic(void * memory ) {
return (block *)(( uint64_t *) memory - MAGIC );

}

We also provide functions to find the blocks before and after a given
block. The block after the current block is found by adding the magic
distance to the data field and then add the size of the data field minus one.
We do the minus one since the last data field is the footer, i.e. first field, of
the next block.

Finding the block before the current block is doing the same thing but
now in reverse. Remember that we can not trust the footer field unless the
the block is marked as mergeable. This should be the case when ever we use
this function but just to make sure we add an assert statement.
static block * locate_after (block * current ) {

int size = current ->size;
return (block *)(( uint64_t *) current +MAGIC +(size -1));

}

static block * locate_before (block * current ) {
assert (current ->merge );
int size = current -> footer ;
return (block *)(( uint64_t *) current -(size -1) -MAGIC );

}
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The next procedure is to update the footer information of a block. We
first locate the following block and then set the footer field of that block.
We also provide a function to return the footer information but this is not
needed by any of our operations, but it could be nice to have for debugging
purposes.
static void set_footer (block * current ) {

block *after = locate_after ( current );
after -> footer = current ->size;

}

static int get_footer (block * current ) {
block *after = locate_after ( current );
return after -> footer ;

}

One more function before we go; we need to convert a request from the
user, that is expressed in a number of bytes, to the size of the required block.
static int align(int size) {

int rem = (size % 8);
if(rem != 0)

size += 8 - rem;
size >>= 3;
if (size <= MIN)

return MIN;
else

return size;
}

3.2 creating a new heap

We do have a regular heap that we could use and increment using sbrk() but
we will instead use mmap() to create a new heap that we will manage. If
we mmap a new memory area of size HEAP words (8-byte words) then how
do we turn this into a block? The problem is that if we turn this into one
block only then we might try to access the block after it, and then have a
segmentation fault or worse. In order to prevent this we split the block into
one large block and one zero element block in the end, the sentinel. The
purpose of this block (that then only consists of the footer, size and flags) is
to allow us to set the footer and determine that we should not try to merge
with the block.
block *new () {

size_t length = HEAP* sizeof ( uint64_t );
int prot = PROT_READ | PROT_WRITE ;
int flags = MAP_PRIVATE | MAP_ANONYMOUS ;
block *new = (block *) mmap(NULL , length , prot , flags , -1, 0);
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if( new == MAP_FAILED ) {
return NULL;

}
int size = HEAP - MAGIC - OVERHEAD ;
// initiate the new block given its size

block * sentinel = locate_after (new );
// initiate the first fields of the sentinel

return new;
}

Fill in the missing parts that initialize the new block and the sentinel.
The new block should be free, not wishing to merge with the block before,
have the right size and pointers set to null. The sentinel should look like it
is taken, mergable (all though we will never do that) of size zero and have
the correct footer information.

Define heap to a suitable size (a couple of Ki), we will allocate more
heaps as needed but the size of HEAP will determine the maximum size
that we can hand out to user.

3.3 finding a block

We will assume that all free blocks are linked in a double linked lists acces-
sible by the global variable freelist. This pointer will initially be null but if
it is we will create a new heap block.

The procedure that finds a block can look like follows: we run through
the freelist looking for a suitable block, if no block is found we create a new
block and add it to the freelist. Note that the code below will run for a very
long time if we request a block larger than the largest block returned from
new(), change it if you want.
static block * freelist = NULL;

block *find(int size) {
block *found = NULL;
while (1) {

found = freelist ;
while (found != NULL) {

if (found ->size >= size) {
// found , split if necessary
break ;

}
found = found ->next;

}
if(found == NULL) {

block *heap = new ();
if(heap == NULL) {
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break ;
}
// add first in freelist

} else {
break ;

};
}
return found;

}

The somewhat tricky part is of course to unlink, and split if possible, the
found block. The block header of the following block must also be updated
to indicate that the found block is not a candidate for merging. If we split
the found block the remaining size must be at least min plus overhead in
size.

3.4 returning a block

To return a block is of course tricky but if we use the pseudo code that
we have and use the primitive functions that do the low level fiddling it
should be quite straight forward. At least we do not have any corner cases
to consider.
void merge(block * current ) {

if(current ->merge) {
block * before = locate_before ( current );
block *after = locate_after ( current );
if (after ->free) {

// merge with before and after
} else {

// merge with before
}
set_footer ( before );

} else {
block *after = locate_after ( current );
if (after ->free) {

// merge with after
} else {

// no merge possible
}
current ->free = TRUE;
set_footer ( current );

}
}

It is very easy to forget to update a footer or set the resulting size wrong
by one. Debuging the program becomes a nightmare since it’s very hard to
figure out what happened. Do work your way through an example step by
step and make sure that the four cases are handled properly.
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3.5 user interface

The user interface should follow the manual description of malloc() and
free() but we can name our procedures differently in order to be able to use
the regular library routines in our benchmark program or use printf() calls
to trace the execution.

The dalloc() procedure will take a size specification in bytes that we first
convert to a size request in 8-byte words. If find() returns a null pointer we
do the same but otherwise we hide the header and return a pointer to the
data field.
void * dalloc ( size_t bytes) {

if(bytes == 0 ){
return NULL;

}
int size = align(bytes );
block * current = find(size );
if( current == NULL)

return NULL;
return hide( current );

}

The dfree() function provides a pointer that is pointing to the data field
so we first have to apply some magic to convert this to a pointer to the
block. The merge operation should not return anything so if all works fine
we’re done.
void dfree(void * memory ) {

if( memory != NULL) {
block * current = magic( memory );
merge( current );

}
return ;

}

3.6 sanity check

When you’re programming on this level and do your own pointer arithmetic,
things will go wrong. When things go wrong and you write to a position
that you should not access mysterious things will happen. It is a good strat-
egy to try to catch these mistakes as early as possible and adding assert()
statements certainly helps.

When I implemented my version of the allocator it helped me to do a
sanity check of the free list after each call to find() or merge(). The sanity
check runs down the list and checks that each element looks ok. This is
what it looked like:
void sanity () {

block *next = freelist ;
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block *prev = NULL;
while (next != NULL) {

assert (next ->free );
assert (next ->merge == FALSE );
assert (next ->size >= MIN );
assert ( get_footer (next) == next ->size );
assert (next ->prev == prev );
block *after = locate_after (next );
assert (after ->merge == TRUE );
assert (after ->free == FALSE );
prev = next;
next = next ->next;

}
}

4 Benchmarks
Implement the magical allocator and then set up an environment where you
can do some benchmarks. We are mostly interested in how the freelist grows
as we increase the number of operations and number of living data objects.

4.1 fixed set of data objects

Set up a benchmark where you keep a maximum of k blocks of various sizes
and perform an increasing number of dalloc() and dfree() operations. Does
the length of the freelist change?

4.2 variable set data objects

Change the benchmark so that you fix the number of operations but change
the number of blocks that are kept. Does the length of the freelist change?

4.3 cost of operations

How much time does it take to allocate or free a block. Set up a benchmark
and measure how long time it takes to perform an operation. The previous
benchmarks can be used to get an overall understanding of the cost. If
you try to separate the cost of allocate and free operations you will run
into a problem of accuracy of the clocks. If you set up a benchmark with
a thousand malloc operations in a sequence one could question if this a
realistic scenario.
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5 Improving the system
There are many things that we could improve in our implementation; here
a few things that you could ponder:

• best-fit/worst-fit: we now implement first-fit since we happily take the
first available block in the list. You could quite easily change this so
that you run through the list once and search for the best or worst fit.

• next-fit: it is harder to change the implementation to implement next-
fit since blocks could be merged and thus disappear from the list. It
should work but when you do a merge think about what would happen.

• segmented list: this is what Dough Lea uses in his implementation.
Keep an array of lists of different sizes: for the smaller sizes you can
have one list per size and for the larger, group them together.

• small blocks: it’s very wasteful to allocate a block of 32 bytes to hold
user data of 8 bytes. Could we implement a special list for 8 byte
request that only have an overhead of 8 bytes?

If you have time you could implement one of the improvements and run
the benchmarks to see how well you do.
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