Take me for a spin
Johan Montelius

HT2016

1 Introduction

We will first experience that we can not implement any synchronization
primitives using regular read and write operations. Then we will implement
a spinlock using a test-and-set atomic operation. Once we know that we can
actually control the execution we will move on using the pthread library to
implement a concurrent data structure.

2 total-store-order

The thing with total store order is that the only thing that is ordered is the
store operations. Read operations are a bit free to move and can thus be
done before a write operation that we just have issued. As we will see this
prevents us from writing a simple lock using only read and write operations.
To see that things break down let’s implement something that should work
and then obviously does not.

2.1 Peterson’s algorithm

The algorithm is quite simple but a bit mind bending before you under-
stand how it works. We will have two variables, one per thread, that indi-
cates weather a thread is interesting to enter the critical section. Since both
threads can set their flags to interested at the same time we could have a
draw that we somehow needs to sort out. We then use a third variable that
will decide whose turn it is. The funny thing with the algorithm is that both
threads will try to set this to signal that it is the others threads turn.

We will start by implementing an example and then see how it works,
and discover that it doesn’t. Our task is to have two threads incrementing
a shared counter.

#include <stdlib .h>
#include <stdio.h>
#include <pthread.h>

volatile int count = 0;

volatile int request[2] — {0,0};
volatile int turn = 0;

The two variables that are used to express interest are grouped in a
structure called request. The two threads will have identifiers 0 and 1 and
can thus easy access the right flag.

To take the lock a thread will set its own flag to 1 and then wait until
the either the other thread is not interested or it is its turn - this is the
tricky part to understand. Releasing the lock is simply done by reseting the
request flag.

void lock (int id) {
request [id] = 1;
int other = 1-id;
turn = other;
while (request [other | = 1 && turn = other) {}; // spin

}

void unlock (int id) {
request [id] = 0;
}

We’re now ready to describe the threads. As you know the procedures
that we use to start a thread takes one argument so we have to group the
things we want to pass to each thread. We will pass two values, a value that
we will use to increment the counter and an identifier of the thread.

typedef struct args {int inc; int id;} args;

void #*increment (void *arg) {
int inc = ((argsx)arg)—>inc;
int id = ((args%)arg)—>id;

for(int i = 0; i < inc; i++) {
lock (id);
count—+-+;
unlock (id);

}

The main procedure will start the two threads and wait for them to finish
before writing out the value of the counter.

int main(int argc, char xargv|]|) {

if(arge 1= 2) {
printf("usage peterson <inc>\n");
exit (0);

}

int inc = atoi(argv|[1l]);

pthread t one p, two p;
args one_args, two_args;

one args.inc = inc;
two args.inc = inc;
one args.id = 0;
two args.id = 1;

pthread create(&one p, NULL, increment, &one args);
pthread create(&two p, NULL, increment , &two args);
pthread join(one p, NULL);
pthread join (two p, NULL);

printf("result is %d\n", count);
return 0;

When you compile the program you have to include the pthread library,
this is done using the -1 flag.

> gcc -o peterson peterson.c -lpthread
If everything works you should be able to run the program like this:

> ./peterson 100
start O

start 1

result is 200

Case closed, we could have ended this tutorial but try with some higher
values to see what is happening. If you’re running on a single core CPU
you will never see something weird but take my word - it doesn’t work on a
multi-core CPU. The reason is that each thread has a sequence, write own
then read other, and the algorithm is based on that you actually set you
own flag before checking the other threads flag. Total store order does not
guarantee that this order is kept - it could be that we actually see the value
of other before our own value has been propagated to memory. This will then
allow both of the threads to think that the other thread is not interested in
the lock.

2.2 the atomic test-and-set

The savior is a family of atomic operations that will both read and modify
a memory location. We will only do small changes to our program so make

a copy and call it swap.c. First of all we will remove the sequence declaring
the two flags and turn variable and only have one global variable that will
serve the purpose of a mutual-exclusion lock.

We then define the magical procedure that tries to grab this lock. The
procedure will compare the content of a memory location and if it is O,
unlocked, it will replace it with a 1, locked. If it succeeds it will return O
and we know that we have obtained the lock.

volatile int global = 0;

int try(volatile int xmutex) {
return _ sync_val compare and swap(mutex, 0, 1);

t

The lock procedure is changed to operate on a mutex and repeatedly
tries to grab this lock until it either succeeds or the end of time. Releasing
the lock is simple we just write a 0.

void lock(volatile int smutex) {
while (try (mutex) != 0); // spin
}

void unlock (volatile int smutex) {
xmutex = 0;
}

To use the new lock we have to adapt the increment procedure and
provide the mutex variable as an argument.

typedef struct args {int inc; int id; volatile int smutex;} args;

void #*increment (void *arg) {

int inc = ((argsx)arg)—>inc;
int id = ((args«)arg)—>id;
volatile int xmutex = ((argss*)arg)—>mutex;

for(int 1 = 0; 1 < inc; i++) {
lock (mutex);
count-+-+;
unlock (mutex) ;

}
t

Fixing the main procedure is left as an exercise to the reader, as it is
often phrased when one is tiered of writing code. If your handy you will be
able to compile the program without any errors and you’re ready to see if it
works.

> ./swap 10000000
start 2
start 1
result is 20000000

- Ahh, (I know this is not a proof) complete success. This is it we have
conquered the total-store-order limitations and are now capable to synchro-
nize our concurrent threads.

3 Spinlocks

The lock that we have implemented in swap.c is a so called spinlock, it tries
to grab the lock and will keep trying until the lock is successfully taken. This
is a very simple strategy and in most (or at least many) cases it’s a perfectly
fine strategy. The first downside is if the thread that is holding the lock will
be busy for a longer period, then the spinning thread will consume CPU
resources that could be better spent in other parts of the execution. This is
performance problem does not prevent the execution from making progress.
If this was the only problem one could use spinlocks and only tackle the
problem if there was a performance problem. The second problem is more
severe and can actually put the execution in a deadlock state.

3.1 priority inversion

Assume that we have two threads, one low priority and one high priority.
The operating system uses a scheduler that always give priority to a high
priority thread. Further assume that we’re running on a singe core machine
so that only one thread can make progress at any given time.

The two threads will live happily together but the low priority thread will
of course only get a chance to execute if the high priority thread is waiting
for some external event. What will happen if the low priority thread takes a
lock and starts to execute in the critical section and the high priority thread
wakes up and tries to grab the same lock?

You have to think a bit and when you realize what will happen you know
what priority inversion is. This is of course a problem and there is no simple
solution but one way is to boost the priority of threads holding locks. A
high priority thread that finds a lock being held would delegate some of its
priority to the thread that is holding the lock. This is a sensible solution but
of course requires that the operating system knows about locks and what
thread is doing what. We will avoid this problem simply by saying that
it’s not up to the lock constructor but to the one who wants to introduce
priorities.

3.2 yield

The performance problem we can solve by simply letting the thread that
tries to grab the lock go to sleep if the lock is held by someone else. We will
first do an experiment to see what we are trying to fix.

We first add a simple print statement in the loop so a dot will be printed
on the screen. Run a few tests and see how often it actually happens that we
end up in a loop. Note that the print statement will take a lot longer time
compared to just spinning so it is not an exact measurement but indicates
the problem.

while (try (mutex) != 0) {
printf(".");
}

We would get a more accurate number if we kept an internal counter in
the spinlock and as part of taking the lock we return the number of loops it
took to take it. This is a small change to the program. Adapt the lock()
procedure and then change the increment () procedure so it will print the
total number of loop iterations it has performed during the benchmark.

int lock(volatile int xmutex) {

int spin = 0;
while (try (mutex) != 0) {
spin—++;

}

return spin;

Now for the fix - add the statement sched_yield() ; after the increment
of the spin counter. Does the situation improve?

3.3 wake me up

Going to sleep is only half of the solution the other one is being told to wake
up. The concept that we are going to use to achieve what we want is called
futex locks. GCC does not provide a standard library to work with futex:s
so you will have to build your own wrappers. Take a copy of your program,
call it futex.c and do the following changes.

First of all we need to include the proper header files. Then we use the
syscall() procedure to make calls to the system function SYS_futex. You
don’t have to understand all the arguments but we’re basically saying that
to do a futex_wait () we look at the address provided by futexp and if it is
equal to 1 we suspend. When we call futex_wake () we will wake at most 1
thread that is suspended on the futex address. In both cases the three last
arguments are ignored.

#include <unistd .h>
#include <linux/futex.h>
#include <sys/syscall . h>

int futex wait(volatile int *xfutexp) {

}

void futex wake(volatile int xfutexp) {
syscall (SYS futex, futexp, FUIEX WAKE, 1, NULL, NULL,
)

return syscall (SYS futex, futexp, FUTEX WAIT, 1, NULL, NULL,

Now we have the tools to adapt our lock() and unlock() procedures.
When we find the lock taken we suspend on the lock and when we release the
lock we wake one (if any) suspended thread. Notice that we use the mutex
lock as the address that we pass to futex_wait (). The call to futex_wait ()
will only suspend if the lock is still held and this property will prevent any
race conditions. When we release the lock we first set the lock to zero and
then call futex_wake() - what could happen if we did it the other way
around?

int lock(volatile int xlock) {

int susp = 0;
while (try (lock) = 0) {
susp-+-+;

futex wait (lock);
}

return susp;

}

void unlock (volatile int xlock) {
xlock = 0;
futex wake(lock);

}

Now for some experiments, run the swap version and compare it to the
futex version, any difference? Why?

3.4 all fine and dandy

With the atomic swap operation and the operating system support to sus-
pend and wake threads we have everything that we need to write correct
concurrent programs that use the computing resources in an efficient way. In
the rest of this exercise we will use POSIX lock primitives from the pthread
library but this is just sugar, we have solved the main problems.

0);

0);

4 A protected list

To experiment with the pthread lock primitives we will build a sorted linked
list where we will be able to insert and delete elements concurrently. This
first solution will be very simple but only allow one thread to operate on the
list at any given time i.e. any operation is protected by in a critical sector.
The more refined solution will allow several threads to operate on the list as
long as they do it in different parts of the list - tricky, yes!

Since we will use the POSIX locks we first install the man pages for those.
These man pages are normally not included in a GNU/Linux distribution
and they might actually differ from how it is implemented but it’s a lot better
than nothing. If you have sudo right to you platform you can install them
using the following command.

> sudo apt-get install manpages-posix manpages-posix-dev

Now let’s start by implementing a simple sorted linked list and operations
that will either add or remove a given element.

4.1 a sorted list

We will start with an implementation that uses a global mutex to protect the
list from concurrent updates. We will use the regular malloc() and free()
procedures to manage allocation of cell structures. Each cell will hold an
integer and the list is ordered with the smallest value first. To benchmark
our implementation we will provide a procedure toggle () that takes a value
and either insert the value in the list, if its not there, or removes it from the
list, if it is there. We can then generate a random sequence of integers and
toggle them so that we after a while will have a list of half the length of the
maximum random value.

Let’s go - create a file 1ist. ¢, include some header files that we will need,
define a macro for the maximum random value (the values will be form 0 to
MAX -1) and the definition of the cell structure.

#include <stdlib .h>
#include <unistd .h>
#include <stdio.h>
#include <pthread.h>

/% The list will contain elements from 0 to 99 x/
#define MAX 100

typedef struct cell {
int val;

struct cell xnext;
} cell;

We then do something that is not straight forward but it will save us a
lot of special cases, reduce our code and i general make things more efficient.
We define two cells called dummy and sentinel. The sentinel is a safety that
will prevent us from running past the end of the list without checking. When
we toggle a value we will of course run down the list until we either find it
or we find a cell with a higher value and then insert a new cell. The sentinel
will make sure that we always find a cell with a higher value.

The dummy element serves a similar purpose and is there to guarantee the
list is never empty. We can avoid the special case ... if list empty then. We
also have a mutex that we will use in our first run to protect the list. We
use a macro for the initialization since we’re fine with the default values.

cell sentinel = {MAX, NULL};
cell dummy = {—1, &sentinel };

cell xglobal = &dummy;

pthread mutex t mutex = PTHREAD MUTEX_ INITIALIZER;

The procedure toggle() will take a pointer to the list and a value that
it will either add or remove. We use two pointers to run through the list,
this and prev. If we find the element we can remove the cell since we keep
a pointer to the previous cell.

We of course take the mutex lock before we start to prevent conflicts
with other operations.

void toggle(cell xlst, int r) {
cell xprev = NULL;
cell xthis = lIst;
cell xremoved = NULL;

pthread mutex lock(&mutex);

while (this—val < r) {
prev = this;
this = this—next;
}
if(this—val = r) {

prev—next = this—next;
removed = this;
} else {
cell sxnew = malloc(sizeof(cell));

new—>val = r;
new—>next = this;
prev—next — new;

}

pthread mutex unlock(&mutex);
if (removed != NULL) free(removed);
return;

Note that we make use of the fact that we always have at least two cells
in the list. The pointer that we have as an argument to the procedure will
never be NULL and we will always find a value that is larger than the value
that we are looking for.

Note that we have moved the call to free() to the end where we are
outside of the critical section. We want to do as little as possible in the
critical section to increase concurrency. We could be speculative and also do
the call to malloc() before we enter the critical section but we don’t know
if we will have to create a new cell so this might not pay off.

4.2 the benchmark

A benchmark thread will loop and toggle random numbers in the list. We
define a structure that holds the arguments to the thread procedure and
pass an identifier (that we can use if we print statistics), how many times we
should loop and a pointer to the list.

typedef struct args {int inc; int id; cell xlist;} args;

void #xbench(void xarg) {
int inc = ((argsx)arg)—>inc;
int id = ((argsx)arg)—>id;
cell xlstp = ((args*)arg)—>list;

for(int 1 = 0; i < inc; i++) {
int r = rand () % MAX;
toggle (Istp, r);
}
}

Now we can tie everything together in a main() procedure that starts
a number of threads and let them run a benchmark procedure each. There
is no strange things in this code we only need to allocate some dynamic
memory to hold the thread structures and bench argument.

int main(int argc, char xargv[]) {

10

if(arge !'= 3) {
printf("usage: list <total> <threads>\n");
exit (0);
}
int n = atoi(argv|[2]);
int inc = (atoi(argv][l]) / n);
printf("%d threads doing %d operations each\n", n, inc);

pthread mutex init(&mutex, NULL);

args xthra = malloc(n x sizeof(args));
for(int i =0; i < n; i++) {
thra| inc = inc;

i].
thra[i].id = i;
thra[i].list = global;

}

pthread t sthrt = malloc(n * sizeof(pthread t));
for(int 1 =0; i < n; i++) {

pthread create(&thrt[i]|, NULL, bench, &thra[i]);
}

for(int i =0; i < n; i++) {
pthread join(thrt[i], NULL);
}

printf("done \n");
return 0;

Compile, hold your thumbs and run the benchmark. Hopefully you will
see something like this:

> ./list 100 2
2 threads doing 50 operations each
done

5 A concurrent list

The protected list is fine but we can challenge ourselves by implementing
a list where we can toggle several elements at the same time. It should be
perfectly fine to insert an element in the beginning of the list and at the
same time remove an element somewhere further down the list. We have to

11

be careful though since if we don’t watch out we will end up with a very
strange list or rather complete failure. You can take a break here and think
about how you would like to solve it, you will of course have to take some
locks but what is it that we should protect and how will we ensure that we
don’t end up in a deadlock?

5.1 Lorem Ipsum

The title above has of course nothing to do with the solution but I didn’t
want to call it “one lock per cell” or something since I just asked you to take
a break and figure out a solution of your own. Hopefully you have done so
now and possibly also arrived at the conclusion that we need one lock per
cell (we will later see if we can reduce the number of locks).

The dangerous situation that we might end up in is that we are trying
to add or remove cells that are directly next to each other. If we have cells
3-5-6 and at the same time try to add 4 and remove 5 we are in for trouble.
We could end up with 3-4-5-6 (where 5 will also be freed) or 3-6 or (where
4 is lost for ever). We will prevent this by ensure that we always hold locks
of the previous cell and the current cell. If we have these to locks we are
allowed to either remove the current cell or insert a new cell in between. As
we move down the list we will release and grab locks as we go, making sure
that we always grab a lock in front of the lock that we hold.

The implementation requires surprisingly few changes to the code that
we have so make a copy of the code and call it clist.c. The cell structure is
changes to also include a mutex structure. The initialization of the dummy
and sentinel cells are done using a macro which is fine since we are happy
with the default initialization. There is of course no need for a global lock
so this is removed.

typedef struct cell {
int val;
struct cell xnext;
pthread mutex t mutex;
b ocell;

cell sentinel — {MAX, NULL, PTHREAD MUTEX INITIALIZER};
cell dummy = {—1, &sentinel , PTHREAD MUTEX INITIALIZER};

The changes to the toggle () procedure are not very large, we only have
to think about what we’re doing. The first thing is that we need to take the
lock of the dummy cell (which is always there) and the next cell. The next
cell could be the sentinel but we don’t know, but we do know that there is
a cell there. Note that you can not trust the pointer prev->next unless you
have taken the lock of prev. Think about this for a while, it could be an
easy point on the exam.

12

void toggle(cell xlst, int r) {
/* This is ok since we know there are at least two cells %/
cell xprev = lIst;
pthread mutex lock(&prev—mutex);
cell xthis = prev—next;
pthread mutex lock(&this—>mutex);

cell xremoved = NULL;

Once we have two locks we can run down the list to find the position we
are looking for. As we move forward we release a lock behind us and grab
the one in front of us.

while (this—val < r) {
pthread mutex unlock(&prev—mutex);
prev = this;
this = this—next;
pthread mutex lock(&this—>mutex);

}

The code for when we have found the location is almost identical, the
only difference is that we have to initialize the mutex.

if(this—val = r) {

prev—>next = this—>next;
removed = this;
} else {
cell snew = malloc(sizeof(cell));
new—>val = r;
new—>next = this;
pthread mutex init(&new—>mutex, NULL);
prev—next = new;

}

Finally we release the two locks that we hold and then we’re done.

pthread mutex unlock(&prev—mutex);
pthread mutex unlock(&this—>mutex)
if (removed != NULL) free (removed);
return;

?

That was it! We're ready to take our marvel of concurrent programming
for a spin.

13

5.2 do some timings

You are of course now excited to see if you have managed to improve the
execution time of the implementation and to find out we add some code to
measure the time. We will use clock_gettime() to get a time-stamp before
we start the threads and another when all threads have finished. Modify
both the file 1ist.c and clist.c.

We include the header file time.h and add the following code in the
main() procedure just before the creating of the threads.

struct timespec t_start, t_ stop;

clock gettime (CLOCK_MONOTONIC COARSE, &t start);

After the segment where all threads have finished we take the next time
stamp and calculate the execution time in milliseconds.

clock gettime (CLOCK_MONOTONIC COARSE, &t stop);

long wall sec = t_ stop.tv_sec — t_ start.tv_sec;
long wall nsec = t stop.tv_nsec — t_ start.tv nsec;
long wall msec = (wall sec x1000) + (wall nsec / 1000000);

printf("done in %ld ms\n", wall msec);

Compile both files and run the benchmarks using for example 10 million
entries and one to four threads.

5.3 the worst time in you life

This is probably the worst moment in your life - you have successfully com-
pleted the implementation of concurrent operations on a list only to discover
that it takes more time compared to the stupid solution - what is going on?

If we first look at the single thread performance we have a severe penalty
since we have to take one mutex lock per cell and not one for the whole list.
If we have a list that is approximately 50 elements long this will mean in
average 25 locks for each toggle operation.

If we look at the multithreaded execution the problem is that although
we allow several threads to run down the list they will constantly run in to
each other and ask the operating system to yield. When they are rescheduled
they might continue a few steps until they run in to the thread that is ahead
of it, and have to yield again.

If you want to feel better you can try to increase the MAX value. This
value sets the limit on the values that we insert in the list. If this value is
100 we will have approximately 50 elements in the list (every time we select
a new random number we have a 50/50 chance of adding or removing). If we
change this to 10000 we will in average have 5000 elements in the list. This

14

will allow threads to have larger distance to each other and less frequently
run in to each other.

When you do a new set of benchmarks you will see that the execution
time increases as the MAX value is increased. This is of course a result of the
list being longer and the execution time is of course proportional to the length
of the list. To have reasonable execution time you can try to decrease the
number of entries as you increase the maximum value. Will your concurrent
implementation outperform the simple solution?

5.4 back to basics

Let’s stop and think for a while, we have used pthread-mutex locks to im-
plement our concurrent list - why? Because, if a lock is held the thread will
suspend to allow other threads to be scheduled. For how long will a lock be
held? If the list is n elements long we will in average run down n/2 elements
before we find the position where we should toggle an entry. That means
that the thread in front of us that holds the lock only in 1 out of n/2 cases
has reached its destination; it’s thus very likely that the lock will be releases
in the next couple of instructions. If the thread in front of us has found its
position it delete its target and also this is done in practically no time. This
means that in only 1 out of n cases will the lock be held until a thread has
created a new cell, something that could take slightly more time (a call to

malloc()).
This means that if the list has 50.000 cells it is very likely that a held
lock will be release the very next moment. Hmmm, what would happen

if we used a spinlock? We know that spinlocks could consume resources if
the lock they try to take is held by a thread that is doing some tough work
or in the worst case have been suspended but it might be worth the gamble,
let’s try.

We make a new copy of our code and call it s1list.c and do a few changes
to make it work with the spinlock that we implemented in swap.c. Fix the
cell so it holds a int that we will use as the mutex variable and patch the
initialization of dummy and sentinel.

typedef struct cell {
int val;
struct cell xnext;
int mutex;

} cell;

cell sentinel = {MAX, NULL, 0};
cell dummy = {—1, &sentinel , 0};

We then need the spinlock version of try(), lock() and unlock() that
we copy from swap.h. We use the quick and dirty spinlock that does not use

15

sched_yield() nor futex_wait(), we want to be as aggressive as possible.
Patch the code of toggle() to use the new locks and you should be ready
to go.

Better?

6 Summary

We’ve seen why we need locks in the first place, that locks have to be built
using atomic swap operations and that it could be nice to use something
else than spinlocks. The Linux way interacting with the operating system is
using futex but this is the not portable. The POSIX way, that also provides
more abstractions, is to use pthread mutex.

We saw that a true concurrent implementation is a bit tricky and that
it does not always pay-off to try to parallelize an algorithm. If you want to
speed things up, you could try to use spinlocks but then you have to know
what you’re doing.

A final thought could be that if you were given the task to speed up the
concurrent access to a list of 100.000 elements your first question should be
- why don’t you use a7

16

