Hello Dolly
Johan Montelius

HT2016

1 Introduction

This is an experiment where we will explore how processes are created and
what is shared between them. You should have a basic understanding of a
what a process is but we will not assume you’re an expert C programmer.
We will use the library procedure fork() so first take a look at the
manual pages. You will probably not understand everything they talk about
but we get the important information that we need to start experimenting.

$ man fork

We see that fork requires the library unistd.h so we need to include this
in our program. We also read that fork will return a value of type pid_t.
This type is defined in a header file included by unistd.h and is a way of
making the code architecture independent. We will ignore this and assume
that pid_t is a int. Further down the man pages we read that fork returns
both the process identifier of the child process and zero. This is strange, how
can a procedure return two different values? Let’s give it a try, create a file
called dolly.c and write the following:

#include <stdio.h>
#include <unistd .h>

int main() {

}

int pid = fork ();
printf ("pid = %d\n", pid);

return 0;

The above program will call fork and then print the returned value.
Compile and run this program, what is happening?

2 The mother and the child

So the call to fork() somehow creates a duplicate of the executing process
and the execution then continues in both copies. By looking at the returned
value we can determine if we’re executing in the mother process or if we are
in the child process. Try this extension to the program.

#include <stdio.h>
#include <unistd .h>

int main() {

int pid = fork ();

if (pid = 0) {
printf("I’'m the child %d\n", getpid());

} else

{

printf ("My child is called %d\n", pid);

}

printf("That’s it %d\n", getpid());

return

#include
#include
#include
#include

0;

This is not the only way this could have been implemented. One could
for example have chosen to have a construction where we would provide a
function that the child process would call. Different operating systems have
chosen different strategies and Windows for example have chosen to provide
a procedure that creates a new process that is independent of the mother

process.

2.1 wait a minute

To terminate the program in a more controlled way we can have the mother
wait () for the child process to terminate. Try the following:

<stdio .h>
<unistd . h>
<sys/types.h>
<sys/wait .h>

int main() {
int pid = fork ();

if (pid — 0) {
printf("I’'m the child %d\n", getpid());

}

}

sleep (1);

else {

printf ("My child is called %d\n", pid);
wait (NULL);

printf("My child has terminated \n");

printf("This is the end (%d)\n", getpid());

return 0;

The mother waits for its child process to terminate (actually it waits for
any child it has spawned). Only then will it proceed, print out the last row
and terminate.

2.2 returning a value

A process can produce a value (an integer) when it terminates and this value
can be picked up by the mother process. If we change the program so that
the child process returns 42 as it exists, the value can be picked up using the
wait () procedure.

if (pid =— 0) {

}

}

return 42;

else {

int res;

wait(&res);

printf("the result was %d\n", WEXITSTATUS(res));

return 0;

2.3 a zombie

A zombie is a process that has terminated but whose parent process has not
yet been informed. As long as the parent has not issued a call to wait () we
need to keep part of the child process. When calling wait, the parent process
should be able to pick up the exit status of the child process and possibly
a return value. If the child process is completely removed from the system
this information is lost.

We can see this in action if we terminate the child process but wait for a
while before calling wait (). Do the following changes to the program, call
it zombie.c, compile and run it in the background.

if (pid =— 0) {

printf("check the status\n");
sleep (10);

b

}

printf("and again\n");

return 42;

else {

sleep (20);

int res;

wait(&res);

printf("the result was %d\n", WEXITSTATUS(res));
printf("and again\n");

sleep (10);

return 0;

Check the status of the processes using the ps command. Notice how
the two processes are created, how the child becomes a zombie and is then
removed from the system once we have received the return value.

$ gcc -o zombie zombie.c
$./zombie&

$ ps -ao pid,stat,command

2.4 a clone of the process

So we have created a child process that is a clone of the mother process. The
child is a copy of the mother with an identical memory. We can exemplify
this by showing that the child has access to the same data structures but
that the structures are obviously just copies of the original data structures.
Extend dolly.c and try the following:

int main() {

int pid;
int x

pid = fork ();

123;

if (pid =— 0) {

printf (" child: x is %d\n", x);
x = 42;

sleep (1);

printf (" child: x is %d\n", x);
else {

printf(" mother: x is %d\n", x);
x = 13;

}

}

sleep (1);
printf(" mother: x is %d\n", x);
wait (NULL);

return 0;

As you see both the mother and the child sees ha variable x as 123 but the
changes made are only visible by themselves. If you want to see something
very strange you can change the printout to also print the memory address
of the variable x. Do this for both the mother and the child and you will see
that they are actually referring to the same memory locations.

printf(" child: x is %d and the address is 0x%p\n", x, &x);

The explanation is that processes use virtual addresses and they are iden-
tical, they are however mapped to different real memory addresses. How this
is achieved is nothing that we should explore now but its fun to see that it
is working.

2.5 what we do share

Since the child process is a clone of the mother process we do actually share
some parts. On thing that we do share are references to open files. When
a process opens a file a file table entry is created by the operating system.
The process is given a reference to this entry and this is reference is stored
in a file descriptor table that is owned by the process. Now when the process
is cloned, this table is copied and all the references are of course pointing to
the same entries in the file table.

The standard output is of course nothing more than a entry in the file
descriptor table so this is why both processes can write to the standard
output. We also read from the same standard input so we have a race
condition also there.

If you look at man pages you will see a whole range of structures that
the processes share or not share but most of those are not very interesting
to us in this set of experiments.

3 Groups, orphans, sessions and daemons

The mother, or should we call it parent process to be gender neutral, has a
special relationship to the child process. The parent process has to keep track
of its child’s and a child always knows the process identifier of its parent.

int main() {

int pid = fork ();

if (pid =— 0) {
printf("I’'m the child %d with parent %d\n", getpid (), getppid());
1 else {
printf("I’'m the parent %d with parent %d\n", getpid (), getppid());
wait (NULL) ;
¥
return 0;

}

Compile and run this in a terminal, who is the parent of the parent
process? The following commands might give you a clue.

$ psa
$ echo $$

We could find more information about the processes using some flags to
ps. Try ps -fp $$ to see more information about the shell your using ($$
will expand to the process identifier of the shell). The PPID field is the parent
process identifier. Who is the parent of the shell? Where does it all stop?

3.1 the group

The fate of a parent and its child are not directly linked to each other but
they belong to the same process group. Each process group has a process
leader and in our simple examples the parent process has been the leader
of the group. The group identifier /leader is retrieved using the system call
getpgid ().

int main() {
int pid = fork ();

if (pid =— 0) {
int child = getpid();
printf("I’'m the child % in group %d\n", child, getpgid(child));
} else {
int parent = getpid ();
printf("I’'m the parent %d in group %d\n", parent, getpgid(parent));
wait (NULL) ;
¥

return 0;

}

A group is treated as a unit by the shell, it can set a whole group to
suspend, resume or run in the background (allowing the shell to use the
standard input for interaction). We will however not go into how the shell
is working so let’s just accept that processes belong to a process group.

3.2 orphans

As a change we can try to crash the parent process and see what happens
with the child process.

#include <stdio.h>
#include <unistd .h>
#include <sys/types.h>
#include <sys/wait.h>

int main() {
int pid = fork ();
if(pid = 0) {

int child = getpid();
printf("child: parent %d, group %d\n", getppid (), getpgid(child));

sleep (4);

printf("child: parent %d, group %d\n", getppid (), getpgid(child));

sleep (4);

printf("child: parent %, group %d\n", getppid(), getpgid(child));
} else {

int parent = getpid ();
printf("parent: parent %d, group %d\n", getppid(), getpgid(parent));
sleep (2);
int zero = 0;
int i =3 / zero;
¥

return 0;

Save the program in a file called orphan.c. Compile and execute the
program, notice how the parent identifier of the child process changes. The
process has turned into an orphan and adopted by the upstart process (or
init or systemd depending on which system you using). Note the new
process identifier and then check its state using the ps command:

$ps <whatever the process id was>

#include
#include
#include
#include

To see something fun you can take a look at the process tree of the
process:

$pstree <whatever the process id was>

3.3 sessions and daemons

The origin of the notion of a session is a user attaching and logging in to the
system. A session consists of a set of groups and a session leader. As with
groups, the sessions have identifiers that are equal to the leaders process
identifier. Compile and run the program below, which process is the session
leader of our processes?

<stdio .h>
<unistd .h>
<sys/types.h>
<sys/wait .h>

int main() {

int pid = fork ();

if (pid — 0) {

int child = getpid();

printf("child: session %d\n", getsid(child));
1 else {

int parent = getpid ();

printf("parent: session %d\n", getsid(parent));

}

return 0;

b

When you start a new terminal, a new session is created. The operating
system keeps track of sessions and will terminate all groups in a session if
the session leader terminates. This means that if you log in to a system and
start to run processes in the background they still belong to the same session
as your login shell and will be terminated if the session terminates.

If one wants to create a process that should survive the session it must
form its own session. It becomes a daemon, a process that is running in the
background detached from any controlling terminal.

Many of the tasks performed by the operating system are performed by
daemons. They keep track of network interfaces, USB devices or schedules
tasks that should run periodically etc. Your system will probably have fifty
deamons running in the background but the consume very little resources.

#include
#include
#include
#include

4 Starting a program

So far we have seen how a process can be created and how the child process is
related to its parent process. To understand how an operating system works
there is one more very important functionality that we will take a look at -
how we create a process that will execute another program.

When you use the command shell this happens (almost) every time you
enter a command. Some commands are interpreted by the shell and the shell
will do something for us but most “commands” are actually programs that
the shell will start for us. How is a program actually started?

4.1 transforming a process

In Unix systems the execution of a program is done by transforming an
existing process to run the code of the given program. As you will see,
starting a program is done in two steps - creating the new process and then
transforming the process into executing the program.

The mechanism that makes this possible is the family of exec() system
calls. Look-up the man pages of exec, we will use the one called execlp().

<stdio .h>
<unistd .h>
<sys/types.h>
<sys/wait .h>

int main() {

int pid = fork ();

if (pid

— 0) {

execlp("ls", "ls", NULL);
printf("this will only happen if exec fails\n");

} else

{

wait (NULL);
printf("we’re done\n");

}

return 0;

}

The call to execlp() will find the program 1ls and then replace the
code and data segments of the process with the code and data found in the
executable binary. The stack and heap areas are reset so the program starts
the execution from scratch.

4.2 redirection

Even if the memory segments of the process is cleared, the process keeps the
file descriptor table. By changing the table entries we can make the program
read from a standard input of our choice and we can of course redirect the
standard output. This allows us to control the I/O operations of the program
without changing the program in any way.

To see how this works we can create a small program that does nothing
but writes to standard output. Let’s call this program boba.c.

#include <stdio.h>

int main() {
printf("Don’t get in my way.\n");

return

}

#include
#include
#include
#include
#include
#include

0;

Now if we compile and run this program we will of course see the quote
printed in the terminal.

$gcc -o boba boba.c

$./boba

Note that we have to write ./boba and not simply boba if you have not
set up your PATH variable to also include the current directory; more on this
later.

Now if we want to redirect the output to a file called quotes.txt we
could of course do this from the shell directly.

$./boba > quotes.txt

To understand how the shell achieves this we could try to write a pro-
gram jango.c, that clones itself, redirects the standard output and then
transforms the clone into boba. Let’s go:

<stdio .h>
<unistd .h>
<sys/types.h>
<sys/stat.h>
<fecntl . h>
<sys/wait .h>

int main() {

10

int pid = fork ();

if(pid = 0) {
int fd = open("quotes.txt", O RDWR | O _CREAT, S TRUSR | S IWUSR);
dup2(fd, 1);
close (fd);
execl ("boba", "boba", NULL);
printf("this only happens on failure\n");
} else {
wait (NULL) ;
}

return 0;

In the jango.c program we open a file quotes.txt (providing flags to
open it in read-write mode and create it if does not exist). The operating
system will grate a new file table entry and add a reference to it in our file
descriptor table. The table entry will be the first free entry in the table (3).
We then use the system call dup2() to copy the entry to position 1 (the
location of stdout). We then close the £d entry since we will not use this
entry any more.

When we now call execl(), the process will turn into boba. The boba
program knows nothing about what has happened but will of course direct
all output to file descriptor 1 as usual. Try it and you will see that the file
is created and that we will receive the output as expected.

4.3 pipes

The full beauty of how standard input and output can be redirected is shown
when we introduce the concept of pipes. A pipe is a FIFO buffer of characters
and when created we will allocated two file descriptor entries. One entry is
for reading and the other for writing.

Since we are in full control over the descriptor table before we start exe-
cuting a program, we can make one program send all the output to another
programs input. From the shell this is a very powerful tool to combine
sequences of commands.

Assume we have the commands (or rather programs) ps axo sid that
will print the session identifier of every process in the system, sort -u that
will sort lines and output only unique and wc -1 that will count the number
of lines. How do we combine these to find the number of sessions in the
system. Using the shell this is done in one line:

$ ps xao sid | sort -u | wc -1

11

This is achieved using pipes and we can set it up ourselves in a program.
There are however a lot of details to get it right and we will explore this
later in the course. For now you should explore using the pipes from the
command line.

5 Summary

Processes are created by cloning an existing process, the execution continues
in the two duplicates and the only way of telling in which copy we are
executing in, is to look at the value returned from fork().

A parent and child process are in the same process group. If the group
leader terminates all processes in the group will be sent a signal that will
likely cause them to terminate.

Several groups belong to a session with a controlling terminal. If the
session leader terminates or the controlling terminal closes, the whole session
will be terminated.

A session that has been detached from any controlling terminal is called
a daemon. Daemons handle many of the tasks that constitute an operating
system.

Two copies have identical copies of file descriptor tables referring to the
same file table entries. By changing the descriptor tables, the input and
output of a process can be redirected. Two processes can use this to set up
a pipe between them that acts as a buffered FIFO channel.

A process can be transformed to run another program using the system
call exec (). This will reset all memory segments but the transformed process
keeps the file descriptor table.

12

