These boots are made for walking
Johan Montelius

HT2018

Acknowledgment: The later part of this tutorial is based on the first
edition of Philipp Oppermann’s excellent blog “Writing an OS in Rust”.

1 Introduction

In this tutorial you're going to boot your own computer (or virtual machine)
from scratch. Your program will hopefully be able to print “OK” on the
screen, so it’s probably the most meaningless program that you have ever
written; you will however be very proud and live your life with the comfort
of knowing that there is no magic to operating systems.

The examples in this tutorial are built on an Ubuntu system. You will
need an editor to write some code but the programs are very small. You will
need some tools listed in the Appendix to compile and run the programs.

2 The boot process

To understand what you are about to do, you need to understand the boot
process of a typical computer. We describe this process in three stages:
firmware, boot loader and operating system.

2.1 Firmware

When you turn on the power of your computer the CPU will start to execute
instructions on a well defined address. The motherboard is built in a way
that the CPU will find a pre-installed program in a read-only or flash mem-
ory. This program is called the firmware of the system but is often referred
to as the BIOS (Basic Input/Output System) since this was the name used
on IBM compatible PC:s back in the times when “The Terminator” was the
best movie ever. On your laptop today, you will probably find a firmware
system that follows the UEFI standard (Unified Extensible Firmware In-
terface). Most people that do not know the difference simply refer to any
firmware program as the BIOS (and so will I, if it does not matter).

The role of the firmware is to detect memory modules and external de-
vices, set clock speeds and monitor fans, perform a system test to verify
that all hardware is functioning (Power-On Self-Test, POST) etc; a modern
UEFI firmware also include a graphical user interface. If you interrupt the
start-up procedure (typically by holding down the F2-key) you can enter a
user interface and change any of the setting.

When the system is good to go, several things might happen depending
on which firmware we run. The traditional BIOS firmware was very limited
in what it could do while a modern UEFI compatible firmware is close to a
small operating system. In this tutorial we will follow the path of a tradi-
tional BIOS; this is simpler while still giving you the basic understanding of
what needs to be done to get a machine started.

When the BIOS has performed the initial testing of the system it will
locate the primary disk and read the first segment of 512 bytes. This segment
is called the Master Boot Record (MBR) and this is the first thing that you
will write today. The BIOS does not know anything about file systems so
one can only place the master boot record at a well defined position on disk.

The master boot record is a very small program that will almost imme-
diately start to read a larger program from disk. This could be an embedded
program or an operating system but in most cases it is something called a
boot loader.

2.2 Boot loader

The boot loader (also called boot manager) is a program that is compiled
and stored on disk. Its role is to again examine what the machine looks like;
the BIOS will provide some information but the boot loader knows more
about how the file system is arranged on the disk etc.

On a Linux machine the boot loader is typically GRUB (GNU GRand
Unified Boot loader but there are dozen of boot loaders to choose from and
they are not directly linked to any operating system. If you are using GRUB
then you can configure it to boot one of several operating systems, this is
called dual boot. In this way you can run both Windows and Linux on the
same machine (popular among gamers).

The boot loader will prepare many things that all operating systems
need or can make use of. They also often provide a GUI that you can invoke
by holding down a key during the boot process (for GRUB the right shift
key). You will then be able to select which system to start, perform memory
test etc.

Once the boot loader has determined which operating system to start,
it will read the kernel from disk and jump to its first instruction. Once this
is done the operating system is in control.

2.3 Operating System

The operating system will start by taking control over the hardware. It
will move to 64-bit mode (if that is not already done), create a stack, set
up the interrupt descriptor table, initialize virtual memory etc. It will then
organize the task scheduler, the file system and hundreds of other things
before it launches services for users to access.

A large operating system is divided into modules and not all modules
need to be provided in the kernel when the system boots. Kernel modules
can be brought in at a later stage depending on how the user wishes to use
the system. This modularity allows the system to be modified to handle new
hardware etc. The largest part of an operating system is all the modules or
drivers that are needed to cope with various hardware. If all hardware was
identical, life would be so much simpler.

We will not have time to write a full operating system in one course,
but one could write a small kernel in a couple of months, that works for
a particular hardware. To write a complete operating system is of course
a huge task but it’s not something that’s undoable. If you want to follow
a new operating system in development you can take a look at Redox; an
operating system written in Rust.

3 Let’s go

So now that you have a basic understanding of how the boot process works
let’s do some coding. The first thing we will do is to create a minimal master
boot record and learn how to boot a virtual machine (or your own laptop)
using our code.

3.1 Some tools to get you going

In order to write a small master boot record we need an assembler. The
nasm assembler, that you can install using apt, will serve our purpose. We
also need a machine to run on and although you could use our own laptop
this would be too cumbersome. It is much easier to use a virtual machine
or emulator. One popular choice is the QEMU emulator, a system that can
not only virtualize a machine but can also be configured to virtualize just
about any type of hardware.

QEMU would for example allow us to develop and run programs com-
piled for an ARM processor, even though we have done the development
on a X86 architecture. This would of course require that we compile our
programs for the ARM architecture - this is often called cross compilation.
We will not do this in this assignment, rather we will assume that you’re
developing on a X86 architecture and let the QEMU emulate a X86 archi-
tecture.

> sudo apt install nasm

> sudo apt install gemu-system-x86

3.2 The master boot record

The master boot record is a 512 byte sequence that is the program that we
will run. We will simply implement a program that writes “Hello” to the
screen and then loops. Since we need to work with explicit addresses and
will call procedures of the BIOS we need to do this in assembly. Create a
file called boot.asm and start hacking.

Note that in the program listing below we use Intel-syntax as opposed to
ATET-syntax. The most striking difference is that commands are written:
operation, destination, source. This could be very confusing if you have only
used AT&T-syntax that uses: operation source destination.

The program needs to be compiled by the assembler (nasm) for a 16-bit
Intel 8086 processor. Although you probably have an Intel iCore or AMD
Ryzen processor, a million times more powerful than a 40-year old 8086
processor, it will boot up pretending to be a 16-bit 8086 processor (I know
this sounds absurd but it is very backwards compatible). Therefore we tell
the assembler that it should produce 16-bit code; at the top of the page
write this:

bits 16

The next thing we need to do is to set up the stack segment and data
segment register. If you have not read about memory segmentation and how
this is done on a 8086, this is almost incomprehensible. The idea is that all
memory references are done relative a segment register. We know that our
code will be loaded into memory address 0z07c00 and thus load 0z07c0 into
the data segment register. The value will be shifted four bits before added
to an address. The stack segment register is given a value 0x07c0 plus 0z20
since our master boot record is 0200 (512) bytes long. The stack pointer is
then set to 0z1000 which means that the stack will go from memory address
0x08E00 to 0x07E00 (it grows down).

For almost all instructions that we have, this does not mean anything
but we need a stack and we will make use of one pointer to a text string and
we will have to somehow reference this.

Let’s just leave this for now and we will try to understand what is hap-
pening later. The piece of code goes like this:

start:
mov ax, 0x07CO ; 0x07c00 is were we are
add ax, 0x20 ; add 0x20 (when shifted 512)
mov sSsS, ax ; set the stack segment
mov sp, 0x1000 ; set the stack pointer
mov ax, 0x07CO ; set data segment...
mov ds, ax ; more about this later

So far so good - it’s now time to set up the arguments for the BIOS print
procedure. We have left the BIOS but the BIOS has a set of procedures that
we can make use of and one of them is the print character procedure. We will
print our message, character by character, and we therefore place a pointer
to it in register SI (Source index). We also set the identifier for the print
procedure (0z0e) in the AH register. Then we are set to go.

mov si, msg ; pointer to the message in SI
mov ah, OxOE ; print char BIOS procedure

Now for the printing of the message; we will load one byte from what
ever SI is pointing to and copy it to register AL, check that it is not equal
to zero and print it to the screen.

.next:
lodsb ; next byte to AL, increment SI
cmp al, O ; 1f the byte is zero
je .dome ; jump do done
int 0x10 ; invoke the BIOS system call
jmp .next ; loop

.done:
jmp $; loop forever

This looks a bit strange but we’re using a special instruction here, lodsb,
that does several things. It will by default use SI to fetch a byte, store it
in AL and increment SI by one. Since we have set up SI to point to our
message we will take one character after the other until we find a byte that
is zero.

The print procedure is invoked by raising an interrupt with the argu-
ment 0z10. The processor will then push a return address on the stack and
use the interrupt descriptor table to jump to the BIOS call handler. The
interrupt descriptor table determines what should happen when interrupts
are generated. The operating system will when it is ready fill this table with
routines thus taking control over all execution.

The BIOS interrupt handler will look in register AL, find a byte and
print that character to the screen. It will then return from the call and we
can continue with the next byte. When all characters have been printed we
just loop forever.

We are now almost done but we need our welcome message. The db in-
struction will add a sequence of bytes (the ASCII of “Hello”) at this location
and terminate it with a zero.

msg: db ’Hello’, O ; the string we want to print

Now for the magic, we need to turn this into a 512-byte sequence with
a precise master boot record signature (0xAA55) at the end. The times
directive will repeat the assembly instruction db 0 (set byte to zero) a number
of times. The $ and $§ symbols are macros for the current position and start
of segment position. We can then calculate how many zeros wee need to have
to fill this segment up to position 510. We then have two bytes left and there
we write the magic signature.

times 510-($-$$) db 0 ; fill up to 510 bytes
dw OxAA55 ; master boot record signature

That’s it, we now have a master boot record.

3.3 Boot a machine

To now boot a machine with this boot record we first need to assemble it
to a binary. We use the nasm compiler and call the output boot.bin. The
-f bin tells the assembler that we want a plain binary file without any bells
nor whistles.

> nasm -f bin -o boot.bin boot.asm

You can verify that the file is exactly 512 bytes long using the ls com-
mand.

> 1s -1 boot.bin

Now we start the QEMU emulator and provide our binary as the master
boot record. QEMU will behave as a regular x86 processor and start to
execute our program. Give it a try:

> gemu-system-x86_64 -drive file=boot.bin,index=0,media=disk,format=raw

If everything works (does it ever on the first try), you will see a termi-
nal window with the print out by the QEMU system first, followed by our
“Hello” message. You might not believe that this would actually work on a
real machine but trust me it does.

4 The GRand Unified Bootloader - GRUB

Now that we know that we can boot a machine from scratch we are going to
make use of an existing boot loader. This will make life easier for us since
it will do part of the work that we would otherwise have to do.

We will now create an ISO image of a disk that holds the GRUB master
boot record in its first segment. An ISO image is the format of a CD-ROM

disk that we can tell QEMU or VirtualBox to boot from. When booting
using this disk, GRUB will be loaded.

To help us with this we will use a tool called grub-mkrescue, a tool
that is used to create bootable rescue disks. The procedure is slightly more
complicated but you will have your own operating system (that writes OK
on the screen) up in no-time. We will now call our program the kernel since
it is how a regular kernel is loaded.

You need grub-common, grub-pc-bin, xorriso and mtools.

> sudo apt install grub-common
> sudo apt install grub-pc-bin
> sudo apt install xorriso

> sudo apt install mtools

The ISO image will also hold our kernel and a configuration file that
instructs GRUB that we want our kernel to be loaded. Let’s start by building
a small kernel.

4.1 the multiboot header

Since we wrote the master boot record in a very special way, we need to
write the kernel in a special way. In order for GRUB to recognize it as a
kernel it must start with a magic multiboot header (actually, it does not have
to be in the beginning but we will keep it simple). To make the development
process easier, we will divide our kernel into different parts. These parts will
then be linked together to form a final binary. We begin with the multiboot
header.

This is the multiboot_header.asm, it contains: a magic number, an iden-
tifier for the architecture, the length of header and a checksum. The check-
sum is calculated using the magic number, architecture and the length of
the header. The header also holds a sequence of tags. We will not have any
tags so we simply provide the termination tag.

section .multiboot_header

magic equ 0xe85250d6 ; multiboot 2
arch equ O ; protected mode 1386

header_start:

dd magic ; magic number
dd arch ; architecture
dd header_end - header_start ; header length

dd 0x100000000 - (magic + arch + (header_end - header_start))

dw O ; type
dw O ; flags
dd 8 ; size

header_end:

We now compile this using nasm but we will not turn it into a binary
immediately. We will create an object file, multiboot_header.o, that we will
later link with the kernel. The object file holds the compiled code but is
structured with tags so that a linker knows how to create one final binary
from many object files. We do this by providing the flag -f elf32 that will
generate an ELF-file (Ezecutable and Linkable Format).

> nasm -f el1f32 multiboot_header.asm

4.2 the kernel

The kernel will now be a small piece of code that will run in 32-bit protected
mode. The GRUB boot loader has already gone through the steps of starting
in 16-bit real mode and gradually move up to 32-bit mode. When our kernel
starts, it will not have a stack but the segment registers are set so that we
can address the memory with out any problems.

We will now try an alternative way of accessing the terminal, we will not
use the BIOS systems calls but instead use a memory area that is directly
mapped to the terminal. The view we have is that the 80x25 characters on
the screen are directly mapped to a memory area called the VGA buffer.
This buffers starts on location 0xb8000 and maps 80 x 25 = 2000 characters.
Each character is represented by two bytes where the lower byte is the
character number (basically ASCII) and the higher byte holds the attributes
(low to high): color (4 bits), background (3), blinking (1),

Our first kernel will write “OK” in the upper right corner in white on
green. Note how we write the characters in reverse order (0z4b is K and
0z4f is O); has this anything to do with little-endian? The attribute 0z2f is
when written as a bit sequence equal to 0 010 1111 which is interpreted as:
non-blinking, green background, white font. Look up VGA-compatible text
mode to learn more.

bits 32
global start

section .text

start:
mov dword [0xb8000], 0x2f4b2f4f ; print ‘0K‘ to screen

hlt

The program, small as it is, has a few things that are worth mentioning.
We start by declaring the label start as global. This will tell the assembler
to leave an entry for this tag in the object file. We also declare the section
as .text which is the segment where we will have code. These labels are
used when we will link the program into one executable binary. The bits 32
directive tells the assembler to generate code for 32 bit protected mode and
not the 16 bit mode that we used in our boot program. As for multiboot
header we assemble the kernel and turn it into an object file.

> nasm -f elf32 kernel.asm

4.3 linking the object files

To understand what we will do now now, you can take a look at the object
files using the readelf program. The program will read an ELF object file
and display tons of information that’s mostly mostly Greek (unless you're
from Greece, then it is mostly Chinese).

> readelf -a kernel.o

You will however identify things like the .text segment, start label, X86_64
architecture etc. Don’t ask me to explain all this - the take away is that the
object file contains information for the linker to create an executable binary.

In order to link the kernel and multiboot header correctly we write a
linker script file that will tell the linker what should be done. We call this
file linker.ld and it looks like follows:

ENTRY (start)

SECTIONS {
. = 1M;

.boot :
{
*(.multiboot_header)

.text

*(.text)

The linker will take the two object files and put them together into one
executable file. The executable file is still in ELF format since this is what
GRUB expects. The format describes what segments should be loaded and
where execution is to start. We also specify that the segments should be
loaded at address 1M (0x100000). This is safely above all addresses where
the BIOS and GRUB have allocated their data.

> 1d —m elf_i386 -o kernel.bin -T linker.ld multiboot_header.o kernel.o

You can now inspect the file using readelf: what is the entry point ad-
dress? Does it make sense?

> readelf -a kernel.bin

4.4 creating an ISO image

So now for the last step before we can boot our machine. We should create an
ISO image (this is a standard for CD-ROM discs and will probably survive
for decades although no one has seen a CD-ROM for years). In doing so we
need to set up a directory structure to use grub-mkrescue.

Create the following directory structure and copy kernel.bin to its place.

cdrom/
boot/
grub/
grub.cfg
kernel.bin

The file grub.cfq is a file that GRUB will read during boot time to locate
our kernel. This file holds information about which kernels are available
(hence the name multiboot) and where they are found. We only have one
kernel to choose from but we could have more than one version. We set a

delay of 10 seconds before GRUB loads the default kernel.

set timeout=10
set default=0

menuentry "my os" {

multiboot2 /boot/kernel.bin
boot

We now use grub-mkrescue to create a ISO image that is bootable and
contains both GRUB and our kernel.

> grub-mkrescue -o cdrom.iso cdrom

10

You can inspect the image using the file or isoinfo tools. As you can see
the file is a CD-ROM image, and apparently it’s a bootable disk image.

> file cdrom.iso

> isoinfo -d -i cdrom.iso

If you're really interested in what it looks like you can mount it. It will
then look like any directory in you file system.

> mkdir iso

> sudo mount -o loop cdrom.iso iso

You can now look in the iso directory and explore the file system in the
image. You will of course find the boot directory with our kernel and the
configuration file, but also everything that is needed for GRUB to run.

Let’s see if it works:

> gemu-system-x86_64 -cdrom cdrom.iso

. 8,...9,...10 ... OK!

Congratulations, you have just loaded your first kernel using GRUB.
Only thing needed to create a full-fledged operating system from here, is
simply a ton of work - there is no magic to computers!

5 Summary

You have gone through the steps of booting a computer. The first method
was the most basic where we built a small master boot record and booted
directly from the BIOS. In the second method we booted GRUB and then
booted our kernel from there. To build an operating system from here is
of course a lot of work, but I still think it is valuable to see that operating
systems are not created by magic.

BIOS, UEFIT and more

We used the simpler form of firmware when we tinkered with the system.
A regular computer will probably have a full UEFI firmware, but these can
often be configured to pretend to be a regular BIOS (legacy mode).

If you're interested in knowing more about alternative firmwares you
should take a look at Coreboot; this is an open source firmware that can
be tailored to boot an operating system directly, instead of going through
a boot loader. The start-up sequence can then optimized to bringing up a
systems in seconds rather than a minute. Chromebooks use this firmware
to quickly have the machine up and running.

11

Boot your own machine

If you're running a Linux system you can take a look at your own /boot/-
grub/grub.cfg. This file should not be edited manually but by adding entries
in /etc/grub.d/ and running update-grub, you can configure your own GRUB
to be able to choose between a regular Ubuntu operating system and our
kernel.bin that we have built. You will of course only see “OK” in the top
left corner but it’s a good experience - it takes the magic away.

Going further

If you intend to go further from here you need to get a programming environ-
ment where you can build a system using something better than assembler.
One alternative is to look at what Phillip Opperman is doing on his blog
“Writing an OS in Rust”. You will then learn a lot about operating systems
and a new language.

12

Tools that you need

These are the tools that you must have in your system in order to follow the
tutorial. Assuming that you’re running an Ubuntu machine they should be
easily installed using apt if you have sudo rights.

> sudo apt install nasm
These are the packages that you will need:

e nasm : the assembler

e gemu : the emulator machine

e gemu-z86 : the gemu-system-x86_64

e grub-common : grub-mkrescue to create the GRUB iso image

o grub-pc-bin : to make grub-mkrescue produce a i386 boot loader
e zorriso : to allow grub-mkrescue to create an ISO image

e isoinfo : to look at the ISO image

13

