
Exploring the �le system

Johan Montelius

HT2016

1 Introduction

This is a quite easy exercise but you will learn a lot about how �les are
represented. We will not look to the actual content of the �les but on the so
call meta-data that we have of each �le. In order to understand how much
data there is, we will implement a command that you have probably used
many times in the shell. We will also gather some statistics on the size of
�les and present the numbers in some nice graphs.

2 List a directory

The command that we will implement is a version of the well known ls

command, the command you use to list the content of a directory. Our �rst
try will not be very impressive but at least it will do something. Let's call
it myls so we can use the regular ls to verify that we do the right thing.
Create a �le myls.c and start coding.

2.1 read the directory

To our help we have a library call opendir() that will make things a bit
easier for us. This procedure will return a pointer to a directory stream i.e. a
sequence of directory entries. We can then access each of these entries using
the library procedure readdir(). You should by now be able to �gure out
what header �les you need to include, so we will not list them in the code
sections.

int main (int argc , char *argv []) {

i f (argc < 2) {
pe r ro r ("usage : myls <dir >\n") ;
return −1;

}

char *path = argv [1] ;

DIR * di rp = opendir (path) ;

struct d i r en t * entry ;

1

while ((entry = readd i r (d i rp)) != NULL) {
p r i n t f (" type : %u" , entry−>d_type) ;
p r i n t f ("\ t inode %lu " , entry−>d_ino) ;
p r i n t f ("\tname : %s \n" , entry−>d_name) ;

}
}

Do man readddir and you will see what the dirent structure looks like
and what we could �nd more than what we have printed (not much). If you
compile and run the program you will see your �rst attempt of mimicking
ls, it works but we're far from there. This is what my attempt looked like.

> gcc -o myls myls.c

> ./myls ./

type: 4 inode: 917888 name: .

type: 8 inode: 945912 name: myls

type: 8 inode: 963825 name: myls.c

type 4: inode: 940418 name: ..

So what do we have here: a type, the inode number and the name. We
can make it a bit more readable by interpreting the type information.

2.2 the type

The interpretation is found in the man pages for readdir() and we can print
them out using a switch statement.

while ((entry = readd i r (d i rp)) != NULL) {
switch (entry−>d_type) {

case DT_BLK : // This i s a b l o c k dev i c e .
p r i n t f ("b : ") ;
break ;

case DT_CHR : //This i s a charac t e r dev i c e .
p r i n t f ("c : ") ;
break ;

case DT_DIR : //This i s a d i r e c t o r y .
p r i n t f ("d : ") ;
break ;

case DT_FIFO : //This i s a named pipe .
p r i n t f ("p : ") ;
break ;

case DT_LNK : //This i s a symbo l i c l i n k .
p r i n t f (" l : ") ;
break ;

case DT_REG : //This i s a r e gu l a r f i l e .

2

p r i n t f (" f : ") ;
break ;

case DT_SOCK : //This i s a UNIX domain sock e t .
p r i n t f (" s : ") ;
break ;

case DT_UNKNOWN : // The f i l e type i s unknown .
p r i n t f ("u : ") ;
break ;

}
p r i n t f ("\ t inode %lu " , entry−>d_ino) ;
p r i n t f ("\tname : %s \n" , entry−>d_name) ;

}

As seen in the code above we are not talking about the type in terms of
pdf, txt or a C source �le. The type we are talking about is to di�erentiate
directories and symbolic links etc from regular �les. To �nd out if a particular
�le is a pdf �le we would have to look at its name and see if ends in .pdf; this
is only a convention and you're of course free to name a pdf-�le to foo.jpg if
you want to; doing so will however make it hard to automatically determine
which application to open when you want to view the content of the �le.

This is all there is to the directory, it's a mapping from names to inodes.
We do not now anything about the �le more than the name and remember
that the name is just something that is valid in the directory that we are
currently looking at.

2.3 more information

To �nd more information about a particular �le we use the system call
fstatat(). This procedure will populate a stat structure with all the infor-
mation about the �le we are looking for. There is also a stat() procedure
but this procedure would look-up a �le name in the current directory which
will probably not be the directory that we are looking at. The fstatat()

procedure allows us to specify in which directory we should do the look-up.

struct s t a t f i l e_ s t ;

f s t a t a t (d i r f d (d i rp) , entry−>d_name , &f i l e_ s t , 0) ;

If we insert this above the printf() statement we can write out more
information about the �le, for example its size.

p r i n t f ("\ t inode : %lu " , entry−>d_ino) ;
p r i n t f ("\ t s i z e : %lu " , f i l e_ s t . s t_s i z e) ;
p r i n t f ("\tname : %s \n" , entry−>d_name) ;

Take a look in the man pages of fstatat() and you will �nd more infor-
mation about the �le.

3

3 Things are not that simple

To disturb your world of comfort, where directories map names to inodes
and inodes are something that is on some disk we will complicate things a
bit.

First we will create a dummy directory called dram and then mount a
tmpfs �le system using the directory as a mount point. Let's �rst create a
directory and see what it looks like.

> mkdir foo

:

> ./myls .

:

As you see the directory is given a new inode number and we can ver-
ify that we do the right thing by looking at the output of the regular ls

command.

> ls -il .

:

Now let's try this - mount a tmpfs �le system using the dram directory
as the destination.

> sudo mount -t tmpfs tmpfs ./dram

:

Nothing much has changed and this can be veri�ed my looking at the out-
put from myls. But check what you see when you try the regular command
ls -li - hmm, what is going on?

If you wan to get even more confused look at the output when we look
inside the dram directory.

> ./myls dram

:

> ls -ila dram

:

The regular ls command does not report what we see with myls, but
instead collects the information from the stat structure. Try the following
and things might be a bit more clear.

p r i n t f ("\ t inode : %lu " , entry−>d_ino) ;
p r i n t f ("\ tdev : 0x%lx " , f i l e_ s t . st_dev) ;
p r i n t f ("\ t inode : %lu " , f i l e_ s t . ino) ;
p r i n t f ("\ t s i z e : %lu " , f i l e_ s t . s t_s i z e) ;
p r i n t f ("\tname : %s \n" , entry−>d_name) ;

4

As you see ls uses the inode number found in the stat structure rather
than in the directory listing. Also note that the inode numbers of the
mounted directory, 2, is the same as in your regular root directory. If you
try the command df you will see a list of all �le systems currently mounted
in your system and if do some more investigation you will �nd that all of
them have a root directory with inode number 2.

Inode numbers are local to a �le system and the operating system needs
to keep track of which �le system we are talking about; or, what device the
�le system is found at. The hierarchical name space were directories serves
as mount points for di�erent �le system, provides a seamless name space.
You're normally not aware of which �le system that is activated.

If you're regular Windows user you might be used to the driver letters
C:, D: etc, these are the Windows equivalent of mounted �le systems. You
might wonder where A: and B: went but if you attach a floppy disk drive

you might have it mounted as the A: drive.

3.1 the device

We printed the st_dev value in hex and we did so for a reason. The value
that was printed, let's assume 0x801, is interpreted as disk 8, partition 1. If
you examine the /dev directory you probably see that the �le system that
it is referring to is your main disk drive. This might be di�erent depending
on which machine you run but you should be able to work out the details.

> ls -l /dev/sda*

So the stat structure contains a local inode number and which device
this inode node number belongs to. This indirection from the �true� inodes
that are on disk is called virtual inodes or vnodes; an abstraction layer that
allows your Unix �le system to present several di�erent �le systems with the
same interface.

Enough about mounted �le systems. If you unmount dram we shall try
to gather some statistics of your �les on your machine.

4 Traverse the tree

Let's write a program that counts the number of �les in a directory including
all sub-directories. We have most of the components we need and if we can
only avoid the most obvious pit-falls we should be done i ten minutes. Create
a new �le total.c and start coding.

4.1 a recursive solution

Since we know that the directory tree is not very deep we will implement a
recursive procedure. The procedure count() will open a directory, count the

5

number of �les and recursively count the number of �les in its sub-directories.
We do a quick and dirty implementation where we assume that no directory
path is longer than 1024 characters - a proper solution would allocate the
required amount of memory on the heap.

unsigned long count (char *path) {

unsigned long t o t a l = 0 ;

DIR * di rp = opendir (path) ;

char subd i r [1 0 2 4] ;

struct d i r en t * entry ;

struct s t a t f i l e_ s t ;

while ((entry = readd i r (d i rp)) != NULL) {
switch (entry−>d_type) {

case DT_DIR: //This i s a d i r e c t o r y .

:

s p r i n t f (subdir , "%s/%s" , path , entry−>d_name) ;
t o t a l += count (subd i r) ;
break ;

case DT_REG: //This i s a r e gu l a r f i l e .
t o t a l++;
break ;

default :
break ;

}

}
c l o s e d i r (d i rp) ;
return t o t a l ;

}

We have to think a bit here - the directory contains two very special
entries ".." and "." . If we follow these paths we will for sure wait for a
very long time before we receive any results. We need to prevent the count()
procedure from going into an endless loop so we insert the following check.

6

i f ((strcmp (entry−>d_name , " . ") == 0) | (strcmp (entry−>d_name , " . . ") == 0)) {
break ;

} ;

A small main() procedure and we're done. If you have added all the right
include directives you should be able to compile and run your �le counter.

int main (int argc , char *argv []) {

i f (argc < 2) {
pe r ro r ("usage : t o t a l <dir >\n") ;
return −1;

}
char *path = argv [1] ;
unsigned long t o t a l = count (path) ;
p r i n t f ("The d i r e c t o r y %s conta in s %lu f i l e s \n" , path , t o t a l) ;

}

4.2 exceeding you rights

If you try to run you program on for example /etc you will probably get the
a segmentation fault. Instead of �xing this directly (I know the reason) we
can try to use gdb to try to �nd out what happened.

./total /etc

segmentation fault (core dumped)

We �rst compile the program with the -g �ag set. This will produce a
binary with some additional debug information that will allow us to use gdb.

> gcc -g -o total total.c

We then start gdb giving the program as an argument.

> gdb total

:

:

We now have a (gdb) prompt and can start using the debugger. In this
small example we will only run the program, let it crash and then try to
�gure out what happened. You start the program with the run command,
giving /etc as an argument. It will look something like the following.

(gdb) run /etc

Starting program:/src/total /etc

7

Program received signal SIGSEGV, Segmentation fault.

0x00007ffff7ad58a2 in __readdir (dirp=0x0) at ../sysdeps/posix/readdir.c:44

44 ../sysdeps/posix/readdir.c: No such file or directory.

(gdb)

This tells us that the segmentation fault occurred in the system call
__readdir where dirp was a null pointer. To see where in our code this
happened we step up in the call stack.

(gdb) up

#1 0x000000000040084e in count (path=0x7fffffffd9f0 "/etc/...") at total.c:66

66 while((entry = readdir(dirp)) != NULL) {

(gdb)

Now we see were we are in our code - the while statement in the count()
procedure. We can con�rm that dirp is actually a null pointer by printing
its value.

(gdb) p dirp

$1 = (DIR *) 0x0

The question is why; we received the pointer from the opendir() pro-
cedure so the question is what value path had when we called it. Printing
the value of path will (in my case) reveal that something strange happened
when we tried to open "/etc/polkit-1/localauthority".

(gdb) p path

$2 = 0x7fffffffd9f0 "/etc/polkit-1/localauthority"

(gdb)

If you look at the directory that caused your problem (if there was one)
you might �nd the reason for the failure.

> ls -ld /etc/polkit-1/localauthority

drwx------ 7 root root 4096 2016-04-21 00:11 /etc/polkit-1/localauthority

Hmmm, owned by root with the access rights "rwx���". No wonder a
regular user could not read that directory. Let's �x our code so we take care
of the case where we, for some reason, will not be able to read the directory.

i f (d i rp == NULL) {
p r i n t f ("not ab le to open %s\n" , path) ;
return 0 ;

}

Ok, give it a try.

8

4.3 double counting

What we're counting is the number of links to �les, if a �le object is linked
to by several links this object will be counted twice. We could of course keep
track of which �les that we have seen and make sure that we only count
them twice. If you tried to implemented this, how would you identify unique
�les? Would the inode number be enough?

5 How large are �les?

If we forget about the problem with double counting, we can implement
a program that generates some statistics of �le sizes. We start with some
assumptions and a global data structure where will store the result. Create a
�le called freq.c, or rather take copy of total.c since we're going to reuse
most of the code.

A frequency table will keep track of how many �les we have of certain
sizes. We're not particularly interested in the exact distribution so we only
keep track of the size in steps of power of two. We do not count �les of size
0 and only keep track of �les up to the size 2FREQ_MAX. The last entry in
the table will contain all larger �les and if the machine that you're running
on is not also the machine that keeps all your movies, I guess 232 will be �ne
for our purposes.

#define FREQ_MAX 32

unsigned long f r e q [FREQ_MAX] ;

void add_to_freq (unsigned long s i z e) {
i f (s i z e != 0) {
int j = 0 ;
int n = 2 ;
while (s i z e / n != 0 & j < FREQ_MAX) {

n = 2*n ;
j++;

}
f r e q [j]++;

}
}

We now change the procedure count() so that it will call add_to_freq()
with the size of each �le that it sees. We don't have to return anything so
there are only small changes. We check that fstatat() succeeds before using
file_st, it could be a �le that we do not have read permission to.

void count (char *path) {
:

9

case DT_REG: //This i s a r e gu l a r f i l e .

i f (f s t a t a t (d i r f d (d i rp) , entry−>d_name , &f i l e_ s t , 0) == 0) {
add_to_freq (f i l e_ s t . s t_s i z e) ;

}

break ;

:
}

Almost done, some small changes to the main() procedure and we're
done.

:
p r i n t f ("#The d i r e c t o r y %s : number o f f i l e s sma l l e r than 2^k : \ n" , path) ;
p r i n t f ("#k\tnumber\n") ;

for (int j= 0 ; j < FREQ_MAX; j++) {
p r i n t f ("%d\ t%lu \n" , (j +1) , f r e q [j]) ;

}
:

Hmm, should work - try with a smaller directory �rst and then gather
some statistics of a larger directory (try /usr). If everything works we should
have nice printout of a table and we can of course not resist to explore this
data using gnuplot.

6 Some nice graphs

Start by saving the histogram in a �le called freq.dat and then you can
generate your �rst graph in one line of code.

>./freq /usr > freq.dat

> gnuplot

:

:

gnuplot> plot "freq.dat" using 1:2 with boxes

If you graph looks anything like mine you see that most �le are between
1K and 2K bytes (in the 211 bucket). There are plenty of smaller �les but
few that are smaller than 32 bytes; �les above one megabyte are also rare.
It looks like half of the �les are between 512 and 4K bytes.

An alternative way of presenting these numbers is as a cumulative fre-
quency diagram. Try the following:

10

gnuplot> a=0

gnuplot> cumulative_freq(x)=(a=a+x,a)

:

gnuplot> plot "freq.dat" u 1:(cumulative_freq($2)) w linespoints

This diagram adds the frequencies as we go and shows how many �les
are less than a certain size. If we know that there were 280000 �le in the
/usr directory we could get a nice y-axis that would give us the percentage
of all �les.

gnuplot> plot "freq.dat" u 1:(cumulative_freq($2)/280000) w linespoints

You could of course wonder how much of the hard drive is taken up by
�les of what size and we can give a hint of this by multiplying the frequency
with the average size of the category. If we adapt the function to take the
size into account we have the following:

gnuplot> a=0

gnuplot> cumulative_size(k, x)=(a=a+(x*((2**k)-((2**(k-1)))/2)),a)

:

gnuplot> plot "freq.dat" u 1:(cumulative_size($1,$2)) w linespoints

The graphs that we have generated now will give you a quick overview of
what the �le system looks like. If you would use them in a presentation you
would of course do some more work to �x the scales, titles etc. The graph
should contain all information needed to interpret it; it should not be open
for guessing what the x-axis really means.

7 Summary

So with some simple coding I hope that you have learned some more about
the �le system and even if it was nothing completely new, at least it gave
you some �rst hand experience of what it looks like. It's one thing to look
at the power-point slide, another actually doing it.

11

