
The Process Scheduling Shootout

Johan Montelius

HT2016

1 Introduction

This is an assignment that requires some skill in both C and Erlang (you
can use another language such as Go that provide so called green threads,
check with me before you start). Your task is to set up a ring of processes,
pass around a token in the ring and measure how fast this can be done. You
should show a performance study and propose a plausible reason for why
the results look like they do.

Before you start with this assignment you need a good understanding of
how to use pthreads in C.

2 The Ring

You should write, in both C and Erlang, a program that creates a ring
of processes. Each process has the possibility to send a token to the next
process in the ring, so when we start the program the token will be sent
around in the ring. When the token has been sent around some number of
rounds the program should stop and all processes should terminate. The
program should also produce some measurement that tells us how fast it
could send the token around in the ring.

A process that simply waits for a message and forward this to the next
process in line, will as you might expect be almost trivial to implement (four
lines of Erlang). The tricky part will probably be to set up the ring and be
sure that all processes have actually been created before you start to send
the token around.

You of course also need to keep track of how many rounds the token has
been sent in order to know when to stop. This can be solved in several ways,
either all process know that they should pass the token around for a certain
number of rounds or you have one controller that that does the counting
and then terminate all processes (by sending a special message) when the
last round has been completed.

2.1 in C

In C you can choose to implement the processes using either threads or
regular processes. If you choose threads then the communication might be
easier to solve and it will probably be easier to set up the ring. If you choose
to implement the ring using regular processes you could for example set up

1

pipes between them. If you have time you can do both and see if there is
any difference.

You could choose to implement your own locking mechanism but it will
be so much easier to use the mutex-locks in the pthread library. What
follows is not a complete implementation but things you get you started
going in the right direction.

You will need some data structure that serves as a placeholder of the
token and you will have one such structure between any to processes in the
ring. In order for one process to add the token and the next to pick it up
you need mutex-locks to protect it. It could look as follows:

typedef struct synch t {
int token ; // the token
pthread mutex t mtx ; // p ro t e c t ed by the l o c k
pthread cond t cnd ; // the c ond i t i ona l v a r i a b l e

} synch t ;

You will also need a data structure to pass the arguments to the threads
that we will create. Each thread should be given two placeholders, informa-
tion on how many rounds, a barrier etc.

typedef struct p r o c a r g t {
:
:

} p r o c a r g t ;

Each process in the ring will run a procedure that will try to take token
from one side and place the token on the other side. To do this it must of
course take the mutex-locks. You need to understand mutex-locks and how
to suspend on conditional variables.

void ∗ i n i t (void ∗ arg) {

// unpack the arguments and ge t ho ld o f the two p l a c e ho l d e r s
:

// wai t f o r everyone to s i gn in
p t h r e a d b a r r i e r w a i t (b a r r i e r) ;

// l e t ’ s go
while (rounds > 0) {

// grab l o c k o f prev ious
pthread mutex lock (prev mtxp) ;

// check i f token i s t h e r e i f not suspend on cond i t i on
:

2

// remove the token and unlock prev ious
:

// take mutex−l o c k and p lace token in next p l a c e ho l d e r
:

// unlock and s i g n a l on cond i t i ona l
:

rounds−−;
}
// wai t f o r everyone to s i gn in
p t h r e a d b a r r i e r w a i t (brp) ;

}
The benchmark procedure will first create an array of thread arguments.

It will initialize the structures so that the

int benc (int p , int r) {
:

// s e t up the b a r r i e r
:

// a l l o c a t e some space f o r a t a b l e o f thread arguments
:

// i n i t i a l i z e the thread arguments
:

// take l o c k o f one p l a c eho l d e r
:

// crea t e a l l t h reads
:

// take time
:

// l e t ’ s wai t f o r a l l to s i gn in
:

// s t a r t t imer
:

// s e t token , r e l e a s e l o c k and s i g n a l cond i t i on
:

// wai t u n t i l a l l done
:

// s top t imer
:

// re turn r e s u l t
}

Hmm, that was not a lot of code but I think you can figure out how to

3

do it. The only tricky part is when you initialize the tread arguments and
make sure that the first thread will have access to the last placeholder.

2.2 in Erlang

If you remember some Erlang you should have this up and running in no-
time. The tricky part is of course to make sure that all processes have been
created and maybe how to connect the last process to the first to close the
ring.

This could be the implementation of a process. In this solution all slave
processes simply pass a token to the process in front of them untill they
receive a stop message. A controller process is responsible for counting the
number of rounds.

s l a v e (Lst) −>
r e c e i v e

token −>
Lst ! token ,
s l a v e (Lst) ;

stop −>
Lst ! stop ,
ok

end .

Since Erlang has message passing as a core part of the language the
solution will be quite simple.

2.3 measuring time

Make sure that you measure time in a appropriate way. If you measure
process time you might not measure the right time, since process will not
be running if the toke is not around. You need to use so called wall time.
Explain how and why you measure time in the way you do.

3 The Experiments

How many processes can we have in a ring? How long time does it take to
send a message around? Is the time to pass a message from one process to
another depending on how large the ring is? Is there any difference between
your Erlang implementation and your C implementation? If so, why is there
a difference?

Present your benchmark numbers in one or two diagrams and write up
a nice six page report that describes the benchmarks and your findings. Use
the template in LATEXthat is provided.

4

