
Virtualisation

Johan Montelius

KTH

2020

1 / 26



the process

code
(.text) data heap stack

The role of the operating system - provide a virtual environment for a process.

2 / 26



the kernel

code
(.text) data heap stack

user space kernel space

MMU IDTR

se
gm

.
ta
bl
e

pa
ge

ta
bl
e

in
te
r.

ta
bl
e

3 / 26



indirect execution

Who is in control?
control the registers of the MMU
and you control the virtual address
space
control the IDTR and you control
what will happen when we have an
interrupt
instructions to set MMU or IDT
registers are privileged instructions

Limited direct execution:
only work with mapped memory in
user space,
only execute non-privileged
instructions,
for a limited amount of time.

4 / 26



Interrupts

Synchronous interrupts - exceptions:
faults:

page fault
privilege violation
divide by zero, ...

programmed exceptions:
system call (INT 0x80)
debug instructions

Asynchronous interrupts:
timer interrupt
hardware interrupt: I/O complete,
...

The kernel is interrupt driven.

5 / 26



Virtualisation

hardware

operating system

process

process
process

operating system

process

process

process

hypervisor - virtual machine manager (VMM)

6 / 26



Why?

Utilisation of hardware.

Also provided by a multi-task operating system, what is new?

Applications are completely separated from each other.

What do two processes in an operating system share?

Applications can use different operating systems.

Is this important?
7 / 26



the Hypervisor

Provide virtualisaton of the hardware:
a virtual cpu, part of the processing power
a virtual memory, the illusion of physical memory

I think we have seen this before.

8 / 26



the solution

Provide limited direct execution i.e. allow each guest operating system to execute
in user space and only perform non-privileged operations.

What is the first thing an operating system wants to do?

9 / 26



the virtual IDT
Hypervisor Guest Operating system

set up IDT
pass control to OS

initialize OS
set up IDT

handle interrupt
save ref to IDT of OS

pass control to OS continue as if
nothing happened

The operating system is running in non-privileged mode.
10 / 26



a system call

Hypervisor Guest operating system Application

running
system call
INT 0x80

handle interrupt
check OS IDT

call OS procedure
handle interrupt
return to user

handle interrupt
return to user

resume execution

11 / 26



What about virtual memory?

hardware

guest operating system

process

process
process

hypervisor

virtual addresses

physical addresses

machine addresses

regular translation tables
second level translation

This will be expensive!

12 / 26



regular paging

User process uses virtual addresses that are automatic translated by the hardware
(using page table and the MMU) to physical addresses.

A page fault invokes the kernel that, if allowed, maps a missing page and return
to the user process.

13 / 26



second level paging

Hypervisor Guest operating system Application

running
page fault

handle interrupt
call OS procedure

map missing page
update page table

modify page table
return to OS

return to user
return to user

resume execution

14 / 26



...wait a second

If the guest operating system is executing in user mode - how does it protect
itself from the application process that is also running in user mode?

If we allow the guest operating system to run in kernel mode - then the
hypervisor can not protect it self.

15 / 26



system call revisited

Hypervisor Guest operating system Application

kernel space user space
in user mode
system call
INT 0x80

change tables
OS now in user space

in user mode
handle interrupt
return to user

change tables
OS in kernel space

resume execution

16 / 26



.. thank god for harware

Hardware support:

- Available in both AMD an Intel x86 processors

- Allows hypervisors to provide near “bare metal” performance.

17 / 26



.. a different approach

Para-virtualization: change the operating system that you want to virtualize.

- Change kernel modules in the operating system.

- Recompile source code or patch binary code.

18 / 26



The original goal

Utilisation of hardware.

Applications are completely separated from each other.

Applications can use different operating systems.

What if we skip this.

19 / 26



containers

An operating system uses several name spaces: memory addresses, file paths,
port numbers, device interrupt requests, process id, user id, . . .

Provide a container, a separate environment with its own name spaces.

Processes in different containers are completely separated from each other . . . but
they use the same kernel.

20 / 26



containers

hardware

operating system

process

process
process

process

process

process

21 / 26



the original goal

Utilisation of hardware.

Applications are completely separated from each other.

Applications can use different operating systems.

Why do they have to run on the same hardware?

22 / 26



emulating hardware

x86 hardware

operating system

emulating ARM

operating system

process

process
process

emulating Sparc

operating system

process

process
process

Hardware emulators can be surprisingly efficient.
23 / 26



Types of virtual machines

Emulators
Can emulate a different hardware than the host machine (QEMU, Simics).

Virtual machines
Choose operating system but hardware is set (Xen, KVM, VirtualBox,
VMware).

Containers
Separated name spaces in the same operating system (Dockers, Linux
Containers).

Runtime systems
Dedicated to a language (JVM, Erlang).

24 / 26



... but I never installed a Hypervisor?

VirtualBox etc also installs a kernel module that turns your regular operating
system into a hypervisor.

25 / 26



Summary

Multiple operating systems running on the same machine.
Each operating system provided a virtual hardware.
With hardware support, near bare metal execution speed can be obtained.
Other types: emulators, containers, runtime environments.

26 / 26


