
Virtual memory - Swapping

Johan Montelius

KTH

2020

1 / 31

Virtual memory

1: Allowing two or more processes to use main memory, given them an
illusion of private memory.
2: Provide the illusion of a much larger address space than provided by the
main memory.

Pages can be temporarily stored in secondary memory i.e. on disk.

2 / 31

Processes

Small physical memory

Processes in virtual space Large secondary storage

3 / 31

Large virtual memory

Virtual memory

page in memory page on disk not allocated

4 / 31

The problem of Swapping

Memory management must detect that a page is currently not in memory.
If it is not in memory, how do we find it?
If the memory is full, which page do we throw out?
When we throw out a page, do we have to copy it to disk?
Who should do all this, hardware or operating system?

5 / 31

The page table entry (PTE)

31

Present

1
12

20-bit frame number

R/W

User/Supervisor
Reference

Dirty

Global

6 / 31

The page table entry (PTE)

31

Present

0page slot index
8

area number

6 / 31

Page faults

page present (in memory)
yes no

allowed access
yes no

translate address seg. fault

page allocated (on disk)
yes no

swap in page allowed segment
yes no

allocate page seg. fault

7 / 31

Remember the TLB
TLB hit

yes no

allowed access
yes no

translate addr seg. fault

page present (in memmory)
yes no

retrieve PTE

update

page allocated (on disk)
yes no

swap in page allowed segment
yes no

allocate page seg. fault

8 / 31

The operating system

The operating system keeps track of all processes and maintains:

a memory structure
Which segments are allowed.
Read/write access.
User/Supervisor mode.
Copy on write.

a page table
Which pages are allocated?
Physical frames of pages or
.. location on secondary storage.
Access rights.
Modified, accessed, cacheable...

9 / 31

The cost of page faults

The cost of memory access:

TLB hit, address found in cache: ~1ns
TLB hit, address in memory: ~10ns
TLB miss, page in memory: up to 100ns
TLB miss, page on disk: up to 10ms

Retrieving from disk is a factor 100.000 times more expensive than finding things
in memory.

What can we do while we’re waiting?

10 / 31

Replacement policy

The problem with caching - which item do we throw out when the cache is filled?

Why try to be smart - pick a page by random.

Are pages referenced randomly?

11 / 31

Locality of references

Memory references are not random in space nor time.

Temporal locality: an address that has been referenced is likely to be
referenced soon again.
Spatial locality: an address that is close to something that has been
referenced is likely to be referenced.

In these benchmarks we have simulated locality by assuming that 20% of the
pages are access 80% of the time.

12 / 31

The random policy
When the memory is full select a frame by random and move it to disk.

Is this good?
13 / 31

We can do better!

When you need to throw out a
page, select the one that will be
used the furthest in the future.
page references:
0,1,2,3,0,2,3,1,2,0,3,0

access hit/miss evict memory
0 miss - 0
1 miss - 0,1
2 miss - 0,1,2
3 miss 1 0,3,2
0 hit 0,3,2
2 hit 0,3,2
3 hit 0,3,2
1 miss 3 0,1,2
2 hit 0,1,2
0 hit 0,1,2
3 miss 1 0,3 2
0 hit 0,1 2

14 / 31

Optimal replacement policy

Case closed ehhh? 15 / 31

Optimal replacement policy

Important to know the best possible solution (even if it’s not obtainable).

We might not have access to the future - but the past might give us a good
approximation.

16 / 31

Least Recently Used (LRU)

A page that has not been
referenced for long is not likely to
be referenced in the near future.
page references:
0,1,2,3,0,2,3,1,2,0,3,0

access hit/miss evict queue
0 miss - 0
1 miss - 0,1
2 miss - 0,1,2
3 miss 0 1,2,3
0 miss 1 2,3,0
2 hit 3,0,2
3 hit 0,2,3
1 miss 0 2,3,1
2 hit 3,1,2
0 miss 3 1,2,0
3 miss 1 2,0,3
0 hit 2,0,3

Result: two more misses compared to the optimal. 17 / 31

Least Recently Used

18 / 31

Implement Least Recently Used

Keep track of a queue of pages (as many as we have frames).

In each page reference, move page to the end of the list.

When evicting a page, select the first page in the list.

Is this expensive?

19 / 31

The Atlas Computer / Atlas Supervisor

Manchester University, 1962
48-bit word, 16 K word memory, 96
K word “drum”
24-bit address space
paged virtual memory
512 word pages
approximated Least Recently Used
replacement policy

20 / 31

a much cheaper solution - FIFO

The problem with LRU is that we need to update the lists in each page reference.

It is much cheaper if we only update the list when we have a page fault.

Idéa: It’s better to keep a page that was recently brought in compared to one
that has been around for a while.

21 / 31

FIFO - first-in, first-out

Keep allocated pages in a queue -
add in one end, reclaim in the
other.
page references:
0,1,2,3,0,2,3,1,2,0,3,0

access hit/miss evict fifo
0 miss - 0
1 miss - 0,1
2 miss - 0,1,2
3 miss 0 1,2,3
0 miss 1 2,3,0
2 hit 2,3,0
3 hit 2,3,0
1 miss 2 3,0,1
2 miss 3 0,1,2
0 hit 0,1,2
3 miss 0 1,2,3
0 miss 1 2,3,0

Result: only 3 hits :-(
22 / 31

Let’s try again

Let’s try with more pages 0-4
page references:
0,1,2,3,0,1,4,0,1,2,3,4

access hit/miss evict fifo
0 miss 0
1 miss 0,1
2 miss 0,1,2
3 miss 0 1,2,3
0 miss 1 2,3,0
1 miss 2 3,0,1
4 miss 3 0,1,4
0 hit 0,1,4
1 hit 0,1,4
2 miss 0 1,4,2
3 miss 1 4,2,3
4 hit 4,2,3

3 hits out of 12 page references - hmmm
23 / 31

Belady’s anomaly

Let’s try with more frames, four
instead of three!
page references:
0,1,2,3,0,1,4,0,1,2,3,4

access hit/miss evict fifo
0 miss 0
1 miss 0,1
2 miss 0,1,2
3 miss 0,1,2,3
0 hit 0,1,2,3
1 hit 0,1,2,3
4 miss 0 1,2,3,4
0 miss 1 2,3,4,0
1 miss 2 3,4,0,1
2 miss 3 4,0,1,2
3 miss 4 0,1,2,3
4 miss 0 1,2,3,4

WTF!
24 / 31

approximating LRU

Assume a reference bit in the page table entry, initially set to zero.

When the page is referenced, the bit is set to one - by the hardware.

When selecting a page for eviction - select a page with the reference bit set to
zero.

A page with a reference bit set to one - is given a second chance.

When should a reference bit be cleared?

25 / 31

the clock algorithm

13:0

23:0

7:0
18:0

31:0

2:0

15:0

21:0

11:0
8:0

17:0

29:0

26 / 31

the clock algorithm

13:0

31:0

21:0

11:0 17:0

29:0

access page 7
access page 15

15:1

access page 18
access page 8

8:1

access page 2

2:1

access page 45
move forward, reset reference bit

18:0
7:0

remove page
allocate new page

45:0

move forward

26 / 31

the clock algorithm

27 / 31

dirty pages

You have two frames to choose from, holding:

a page that has been recently used but not modified and,
a page that has not been used for a long time but has been modified.

Which one should we reclaim of we need a free frame?

28 / 31

The page table entry (PTE)

31

Present

1
12

20-bit frame number

R/W

User/Supervisor
Reference

Dirty

29 / 31

in Linux

Implementation of Page Frame Reclaiming Algorithm in Linux:

Global i.e. all processes share all frames.
Two sets: the active list and the inactive list.
Each set implements an approximation of LRU similar to the clock algorithm.
Inactive pages are moved from the active to the inactive set and vice verse.
A kernel thread tries to maintain a set of free frames i.e. moving pages from
the inactive set to disk before it is needed.
Operations are batched to improve disk locality and reduce locking.

30 / 31

The problem of Swapping

Memory management must detect that a page is currently not in memory.
If it is not in memory, how do we find it?
If the memory is full, which page to we throw out?
When we throw out a page, do we have to copy it to disk?
Who should do all this, hardware or operating system?

31 / 31

