
the Shell

Johan Montelius

KTH

2021

1 / 18

Some basic stuff

the shell
files and directories
some tools: grep, wc, sed . . .
write a thesis: gcc, latex, gnuplot, make
environment variables

2 / 18

the shell

3 / 18

the file system

4 / 18

the directory

Commands that you should to know:

ls - list files and directories
mkdir - make a directory
rmdir - remove a directory
cd - change directory
pwd - path of working directory

touch - touch a file
rm - remove a file
mv - move a file
cp - copy a file
ln - create a link (soft/hard) to a file
stat - information about a file

5 / 18

the directory

Commands that you should to know:

ls - list files and directories
mkdir - make a directory
rmdir - remove a directory
cd - change directory
pwd - path of working directory

touch - touch a file
rm - remove a file
mv - move a file
cp - copy a file
ln - create a link (soft/hard) to a file
stat - information about a file

5 / 18

shell expansions

The shell will expand any input, depending on files in the directory, before issuing
command.

~ precede by space - expands to home directory.
* as in *.c - expands to a sequence of characters to matches files in the directory
? as in f??.txt - expands to any single character
[06] as in ID120[06].pdf - expands one of the specified characters
$ as in $HOME - expands to the variable value (more on this later)

Expansion can be controlled by enclosing arguments in single quotes ’ ’, double
quotes " " (variables will be expanded) or precede character by backslash \.

6 / 18

shell expansions

The shell will expand any input, depending on files in the directory, before issuing
command.

~ precede by space - expands to home directory.

* as in *.c - expands to a sequence of characters to matches files in the directory
? as in f??.txt - expands to any single character
[06] as in ID120[06].pdf - expands one of the specified characters
$ as in $HOME - expands to the variable value (more on this later)

Expansion can be controlled by enclosing arguments in single quotes ’ ’, double
quotes " " (variables will be expanded) or precede character by backslash \.

6 / 18

shell expansions

The shell will expand any input, depending on files in the directory, before issuing
command.

~ precede by space - expands to home directory.
* as in *.c - expands to a sequence of characters to matches files in the directory

? as in f??.txt - expands to any single character
[06] as in ID120[06].pdf - expands one of the specified characters
$ as in $HOME - expands to the variable value (more on this later)

Expansion can be controlled by enclosing arguments in single quotes ’ ’, double
quotes " " (variables will be expanded) or precede character by backslash \.

6 / 18

shell expansions

The shell will expand any input, depending on files in the directory, before issuing
command.

~ precede by space - expands to home directory.
* as in *.c - expands to a sequence of characters to matches files in the directory
? as in f??.txt - expands to any single character

[06] as in ID120[06].pdf - expands one of the specified characters
$ as in $HOME - expands to the variable value (more on this later)

Expansion can be controlled by enclosing arguments in single quotes ’ ’, double
quotes " " (variables will be expanded) or precede character by backslash \.

6 / 18

shell expansions

The shell will expand any input, depending on files in the directory, before issuing
command.

~ precede by space - expands to home directory.
* as in *.c - expands to a sequence of characters to matches files in the directory
? as in f??.txt - expands to any single character
[06] as in ID120[06].pdf - expands one of the specified characters

$ as in $HOME - expands to the variable value (more on this later)

Expansion can be controlled by enclosing arguments in single quotes ’ ’, double
quotes " " (variables will be expanded) or precede character by backslash \.

6 / 18

shell expansions

The shell will expand any input, depending on files in the directory, before issuing
command.

~ precede by space - expands to home directory.
* as in *.c - expands to a sequence of characters to matches files in the directory
? as in f??.txt - expands to any single character
[06] as in ID120[06].pdf - expands one of the specified characters
$ as in $HOME - expands to the variable value (more on this later)

Expansion can be controlled by enclosing arguments in single quotes ’ ’, double
quotes " " (variables will be expanded) or precede character by backslash \.

6 / 18

work with a text file

Some more or less simple ways to explore the content of a text file:

cat - concatenate files
less - less is of course more
head - the beginning of a file
tail - the end of a file
grep - search a file for pattern
diff - difference of two files

sort - sort rows
wc - word count
uniq - remove duplicates
tr - transpose char-by-char
sed - stream editor
awk - more powerful than sed

7 / 18

work with a text file

Some more or less simple ways to explore the content of a text file:

cat - concatenate files
less - less is of course more
head - the beginning of a file
tail - the end of a file
grep - search a file for pattern
diff - difference of two files

sort - sort rows
wc - word count
uniq - remove duplicates
tr - transpose char-by-char
sed - stream editor
awk - more powerful than sed

7 / 18

work with a text file

Some more or less simple ways to explore the content of a text file:

cat - concatenate files
less - less is of course more
head - the beginning of a file
tail - the end of a file
grep - search a file for pattern
diff - difference of two files

sort - sort rows
wc - word count
uniq - remove duplicates
tr - transpose char-by-char
sed - stream editor
awk - more powerful than sed

7 / 18

pipes and redirect

The shell can set a file as the standard input of a command or redirect the standard
output and/or standard error.

< as in wc < foo.txt will set standard input.
> as in ls > out.txt will set standard output.
2> as in grep foo bar.txt 2> err.txt will set standard error.

The power of the UNIX shell is the concept of pipes.

grep typedef foo.c | sort | uniq | less

Standard output of one command becomes standard input of the next command

8 / 18

pipes and redirect

The shell can set a file as the standard input of a command or redirect the standard
output and/or standard error.

< as in wc < foo.txt will set standard input.
> as in ls > out.txt will set standard output.
2> as in grep foo bar.txt 2> err.txt will set standard error.

The power of the UNIX shell is the concept of pipes.

grep typedef foo.c | sort | uniq | less

Standard output of one command becomes standard input of the next command

8 / 18

pipes and redirect

The shell can set a file as the standard input of a command or redirect the standard
output and/or standard error.

< as in wc < foo.txt will set standard input.
> as in ls > out.txt will set standard output.
2> as in grep foo bar.txt 2> err.txt will set standard error.

The power of the UNIX shell is the concept of pipes.

grep typedef foo.c | sort | uniq | less

Standard output of one command becomes standard input of the next command

8 / 18

an example

Den bok jag nu sätter mig ner att skriva måste verka meningslös på många - om
jag alls vågar tänka mig, att "många" får läsa den - eftersom jag alldeles
självmant, utan någons order, börjar ett sådant arbete och åndå inte själv är riktigt
på det klara med vad avsikten är.

2019 jag
1818 och
1505 att
1429 det
1045 i
979 en

:

9 / 18

an example

Den bok jag nu sätter mig ner att skriva måste verka meningslös på många - om
jag alls vågar tänka mig, att "många" får läsa den - eftersom jag alldeles
självmant, utan någons order, börjar ett sådant arbete och åndå inte själv är riktigt
på det klara med vad avsikten är.

2019 jag
1818 och
1505 att
1429 det
1045 i
979 en

:

9 / 18

from text to frequency list

Turn a raw text into and ordered frequency list.
Remove special characters (.,?!;:-()”) from text using sed or tr.

Replace space by linefeed to turn the text into a list of words.
Sort the list using sort.
Remove duplicates but add frequency using uniq.
Sort the result using sort.

Everything is of course connected using pipes.

Experiment yourself, the devil is in the details.

10 / 18

from text to frequency list

Turn a raw text into and ordered frequency list.
Remove special characters (.,?!;:-()”) from text using sed or tr.
Replace space by linefeed to turn the text into a list of words.

Sort the list using sort.
Remove duplicates but add frequency using uniq.
Sort the result using sort.

Everything is of course connected using pipes.

Experiment yourself, the devil is in the details.

10 / 18

from text to frequency list

Turn a raw text into and ordered frequency list.
Remove special characters (.,?!;:-()”) from text using sed or tr.
Replace space by linefeed to turn the text into a list of words.
Sort the list using sort.

Remove duplicates but add frequency using uniq.
Sort the result using sort.

Everything is of course connected using pipes.

Experiment yourself, the devil is in the details.

10 / 18

from text to frequency list

Turn a raw text into and ordered frequency list.
Remove special characters (.,?!;:-()”) from text using sed or tr.
Replace space by linefeed to turn the text into a list of words.
Sort the list using sort.
Remove duplicates but add frequency using uniq.

Sort the result using sort.
Everything is of course connected using pipes.

Experiment yourself, the devil is in the details.

10 / 18

from text to frequency list

Turn a raw text into and ordered frequency list.
Remove special characters (.,?!;:-()”) from text using sed or tr.
Replace space by linefeed to turn the text into a list of words.
Sort the list using sort.
Remove duplicates but add frequency using uniq.
Sort the result using sort.

Everything is of course connected using pipes.

Experiment yourself, the devil is in the details.

10 / 18

from text to frequency list

Turn a raw text into and ordered frequency list.
Remove special characters (.,?!;:-()”) from text using sed or tr.
Replace space by linefeed to turn the text into a list of words.
Sort the list using sort.
Remove duplicates but add frequency using uniq.
Sort the result using sort.

Everything is of course connected using pipes.

Experiment yourself, the devil is in the details.

10 / 18

to write a thesis

Run the benchmark and save the result in a text file.

Use gnuplot to produce a graph.

Write the thesis, including the graph, using LATEX.

Set up a Makefile to automate the process.

11 / 18

to write a thesis

Run the benchmark and save the result in a text file.

Use gnuplot to produce a graph.

Write the thesis, including the graph, using LATEX.

Set up a Makefile to automate the process.

11 / 18

to write a thesis

Run the benchmark and save the result in a text file.

Use gnuplot to produce a graph.

Write the thesis, including the graph, using LATEX.

Set up a Makefile to automate the process.

11 / 18

to write a thesis

Run the benchmark and save the result in a text file.

Use gnuplot to produce a graph.

Write the thesis, including the graph, using LATEX.

Set up a Makefile to automate the process.

11 / 18

gnuplot

gnuplot

generate graphs from data in text file (tab separated)
interactive or from script
not a program for statistics (for statistics use R)

12 / 18

gnuplot

gnuplot

generate graphs from data in text file (tab separated)

interactive or from script
not a program for statistics (for statistics use R)

12 / 18

gnuplot

gnuplot

generate graphs from data in text file (tab separated)
interactive or from script

not a program for statistics (for statistics use R)

12 / 18

gnuplot

gnuplot

generate graphs from data in text file (tab separated)
interactive or from script
not a program for statistics (for statistics use R)

12 / 18

gnuplot

gnuplot

generate graphs from data in text file (tab separated)
interactive or from script
not a program for statistics (for statistics use R)

12 / 18

LATEX

pdflatex

will let you focus on content
easy to include content from other files
generates pdf

13 / 18

LATEX

pdflatex

will let you focus on content

easy to include content from other files
generates pdf

13 / 18

LATEX

pdflatex

will let you focus on content
easy to include content from other files

generates pdf

13 / 18

LATEX

pdflatex

will let you focus on content
easy to include content from other files
generates pdf

13 / 18

make

make

the work horse in any UNIX project
script will set up the dependencies between files
will run programs as needed to produce final output i.e “make”
used for programming as well as documentation

14 / 18

make

make

the work horse in any UNIX project

script will set up the dependencies between files
will run programs as needed to produce final output i.e “make”
used for programming as well as documentation

14 / 18

make

make

the work horse in any UNIX project
script will set up the dependencies between files

will run programs as needed to produce final output i.e “make”
used for programming as well as documentation

14 / 18

make

make

the work horse in any UNIX project
script will set up the dependencies between files
will run programs as needed to produce final output i.e “make”

used for programming as well as documentation

14 / 18

make

make

the work horse in any UNIX project
script will set up the dependencies between files
will run programs as needed to produce final output i.e “make”
used for programming as well as documentation

14 / 18

shell variables

The shell maintains a set of variables that can be accessed from the shell,
but not immediately from child processes.

set - control the shell environment
<variable>=<value> - defines a
variable value
$<variable> - access variable from
shell

HOME - home directory
PWD - current directory
PATH - paths searched when looking
for executables
USER - user name

15 / 18

shell variables

The shell maintains a set of variables that can be accessed from the shell,
but not immediately from child processes.

set - control the shell environment
<variable>=<value> - defines a
variable value
$<variable> - access variable from
shell

HOME - home directory
PWD - current directory
PATH - paths searched when looking
for executables
USER - user name

15 / 18

the environment

The environment is a set variables that can be accessed by programs using the
standard library function call getenv().

The shell will set up a set of exported variables that will be visible as environment
variables when a child process is created.

export <variable> - make variable
accessible from child process
printenv - list all environment
variables
env - run command in specified
environment

Functions from standard library.
getenv() - get the value of variable
putenv() - set the value of variable
execle() - execute command in new
environment
: - there are more

16 / 18

the environment

The environment is a set variables that can be accessed by programs using the
standard library function call getenv().

The shell will set up a set of exported variables that will be visible as environment
variables when a child process is created.

export <variable> - make variable
accessible from child process
printenv - list all environment
variables
env - run command in specified
environment

Functions from standard library.
getenv() - get the value of variable
putenv() - set the value of variable
execle() - execute command in new
environment
: - there are more

16 / 18

the environment

The environment is a set variables that can be accessed by programs using the
standard library function call getenv().

The shell will set up a set of exported variables that will be visible as environment
variables when a child process is created.

export <variable> - make variable
accessible from child process

printenv - list all environment
variables
env - run command in specified
environment

Functions from standard library.
getenv() - get the value of variable
putenv() - set the value of variable
execle() - execute command in new
environment
: - there are more

16 / 18

the environment

The environment is a set variables that can be accessed by programs using the
standard library function call getenv().

The shell will set up a set of exported variables that will be visible as environment
variables when a child process is created.

export <variable> - make variable
accessible from child process
printenv - list all environment
variables

env - run command in specified
environment

Functions from standard library.
getenv() - get the value of variable
putenv() - set the value of variable
execle() - execute command in new
environment
: - there are more

16 / 18

the environment

The environment is a set variables that can be accessed by programs using the
standard library function call getenv().

The shell will set up a set of exported variables that will be visible as environment
variables when a child process is created.

export <variable> - make variable
accessible from child process
printenv - list all environment
variables
env - run command in specified
environment

Functions from standard library.
getenv() - get the value of variable
putenv() - set the value of variable
execle() - execute command in new
environment
: - there are more

16 / 18

the environment

The environment is a set variables that can be accessed by programs using the
standard library function call getenv().

The shell will set up a set of exported variables that will be visible as environment
variables when a child process is created.

export <variable> - make variable
accessible from child process
printenv - list all environment
variables
env - run command in specified
environment

Functions from standard library.
getenv() - get the value of variable
putenv() - set the value of variable
execle() - execute command in new
environment
: - there are more

16 / 18

the environment

The environment is a set variables that can be accessed by programs using the
standard library function call getenv().

The shell will set up a set of exported variables that will be visible as environment
variables when a child process is created.

export <variable> - make variable
accessible from child process
printenv - list all environment
variables
env - run command in specified
environment

Functions from standard library.
getenv() - get the value of variable

putenv() - set the value of variable
execle() - execute command in new
environment
: - there are more

16 / 18

the environment

The environment is a set variables that can be accessed by programs using the
standard library function call getenv().

The shell will set up a set of exported variables that will be visible as environment
variables when a child process is created.

export <variable> - make variable
accessible from child process
printenv - list all environment
variables
env - run command in specified
environment

Functions from standard library.
getenv() - get the value of variable
putenv() - set the value of variable

execle() - execute command in new
environment
: - there are more

16 / 18

the environment

The environment is a set variables that can be accessed by programs using the
standard library function call getenv().

The shell will set up a set of exported variables that will be visible as environment
variables when a child process is created.

export <variable> - make variable
accessible from child process
printenv - list all environment
variables
env - run command in specified
environment

Functions from standard library.
getenv() - get the value of variable
putenv() - set the value of variable
execle() - execute command in new
environment

: - there are more

16 / 18

the environment

The environment is a set variables that can be accessed by programs using the
standard library function call getenv().

The shell will set up a set of exported variables that will be visible as environment
variables when a child process is created.

export <variable> - make variable
accessible from child process
printenv - list all environment
variables
env - run command in specified
environment

Functions from standard library.
getenv() - get the value of variable
putenv() - set the value of variable
execle() - execute command in new
environment
: - there are more

16 / 18

package-configure-make-execute

package - a set of source files and scripts

configure - check that everything is available, build Makefile

make - make, compile, environment variables define the target

execute - execute, environment variables describe the session

17 / 18

package-configure-make-execute

package - a set of source files and scripts

configure - check that everything is available, build Makefile

make - make, compile, environment variables define the target

execute - execute, environment variables describe the session

17 / 18

package-configure-make-execute

package - a set of source files and scripts

configure - check that everything is available, build Makefile

make - make, compile, environment variables define the target

execute - execute, environment variables describe the session

17 / 18

package-configure-make-execute

package - a set of source files and scripts

configure - check that everything is available, build Makefile

make - make, compile, environment variables define the target

execute - execute, environment variables describe the session

17 / 18

package-configure-make-execute

package - a set of source files and scripts

configure - check that everything is available, build Makefile

make - make, compile, environment variables define the target

execute - execute, environment variables describe the session

17 / 18

Summary

the shell - your interface to any UNIX system

files and directories - learn to navigate the tree
shell and environment variables
work with text file, connect sequences with pipes

Do learn gnuplot, latex and make before starting your thesis.

18 / 18

Summary

the shell - your interface to any UNIX system
files and directories - learn to navigate the tree

shell and environment variables
work with text file, connect sequences with pipes

Do learn gnuplot, latex and make before starting your thesis.

18 / 18

Summary

the shell - your interface to any UNIX system
files and directories - learn to navigate the tree
shell and environment variables

work with text file, connect sequences with pipes

Do learn gnuplot, latex and make before starting your thesis.

18 / 18

Summary

the shell - your interface to any UNIX system
files and directories - learn to navigate the tree
shell and environment variables
work with text file, connect sequences with pipes

Do learn gnuplot, latex and make before starting your thesis.

18 / 18

Summary

the shell - your interface to any UNIX system
files and directories - learn to navigate the tree
shell and environment variables
work with text file, connect sequences with pipes

Do learn gnuplot, latex and make before starting your thesis.

18 / 18

Summary

the shell - your interface to any UNIX system
files and directories - learn to navigate the tree
shell and environment variables
work with text file, connect sequences with pipes

Do learn gnuplot, latex and make before starting your thesis.

18 / 18

