Scheduling

Johan Montelius

KTH

2021

1/46

process scheduling

2/46

process scheduling

Problem:

2/46

process scheduling

Problem:

We have a set of processes: they all want to execute immediately and they do not
want to be interrupted.

2/46

process scheduling

Problem:

We have a set of processes: they all want to execute immediately and they do not
want to be interrupted.

Solution:

2/46

process scheduling

Problem:

We have a set of processes: they all want to execute immediately and they do not
want to be interrupted.

Solution:

Let's keep some waiting and let's interrupt them.

2/46

process scheduling

Problem:

We have a set of processes: they all want to execute immediately and they do not
want to be interrupted.

Solution:

Let's keep some waiting and let's interrupt them.

Question:

2/46

process scheduling

Problem:

We have a set of processes: they all want to execute immediately and they do not
want to be interrupted.

Solution:

Let's keep some waiting and let's interrupt them.

Question:

@ What metrics are important?

2/46

process scheduling

Problem:

We have a set of processes: they all want to execute immediately and they do not
want to be interrupted.

Solution:

Let's keep some waiting and let's interrupt them.

Question:

@ What metrics are important?

@ Does it matter in what order we schedule processes?

2/46

process scheduling

Problem:

We have a set of processes: they all want to execute immediately and they do not
want to be interrupted.

Solution:

Let's keep some waiting and let's interrupt them.

Question:

@ What metrics are important?

@ Does it matter in what order we schedule processes?

@ Are there optimal solutions?

2/46

The unrealistic assumption ...

Assume we have a set of jobs.

3/46

The unrealistic assumption ...

Assume we have a set of jobs.

@ Each job takes an equal amount of time.

3/46

The unrealistic assumption ...

Assume we have a set of jobs.

@ Each job takes an equal amount of time.

@ All jobs arrive at the same time.

3/46

The unrealistic assumption ...

Assume we have a set of jobs.

@ Each job takes an equal amount of time.
@ All jobs arrive at the same time.

@ A job will run to completion.

3/46

The unrealistic assumption ...

Assume we have a set of jobs.

Each job takes an equal amount of time.
All jobs arrive at the same time.

A job will run to completion.

The jobs only use the CPU (no 1/0 etc).

e 6 6 o

3/46

The unrealistic assumption ...

Assume we have a set of jobs.

Each job takes an equal amount of time.
All jobs arrive at the same time.

A job will run to completion.

The jobs only use the CPU (no 1/0 etc).

The run-time of each job is known.

e 6 6 o o

3/46

The unrealistic assumption ...

Assume we have a set of jobs.

Each job takes an equal amount of time.
All jobs arrive at the same time.

A job will run to completion.

The jobs only use the CPU (no 1/0 etc).

The run-time of each job is known.

e 6 6 o o

3/46

The unrealistic assumption ...

Assume we have a set of jobs.

Each job takes an equal amount of time.
All jobs arrive at the same time.

A job will run to completion.

The jobs only use the CPU (no 1/0 etc).

The run-time of each job is known.

e 6 6 o o

This is unrealistic - we will relax these requirements.

3/46

...every now and then | get a little bit lonely

4/46

...every now and then | get a little bit lonely

BU/I//V/E TYLER

4/46

Performance metrics

Tturnaround — Tcompletion - Tarrival

How long time does it take to complete the job?

5/46

First Come First Serve (FCFS)

Assume we have three tasks, all arrive at time 0 and take 10 ms to execute.

6/46

First Come First Serve (FCFS)

Assume we have three tasks, all arrive at time 0 and take 10 ms to execute.

J1: -
2 oo

J3:

6/46

First Come First Serve (FCFS)

Assume we have three tasks, all arrive at time 0 and take 10 ms to execute.

J1: -
-

J3:

6/46

First Come First Serve (FCFS)

Assume we have three tasks, all arrive at time 0 and take 10 ms to execute.

6/46

First Come First Serve (FCFS)

Assume we have three tasks, all arrive at time 0 and take 10 ms to execute.

0 10 20 30 40 50 60 ms

What is the average Tiurnaround?

6/46

Assume one task takes 30 ms to execute.

7/46

Assume one task takes 30 ms to execute.

7/46

Assume one task takes 30 ms to execute.

7/46

Assume one task takes 30 ms to execute.

7/46

Assume one task takes 30 ms to execute.

0 10 20 30 40 50 60 ms

What is the average Tiurnaround?

7/46

Assume one task takes 30 ms to execute.

0 10 20 30 40 50 60 ms

What is the average Tiurnaround? Can we do better?

7/46

Shortest Job First (SJF)

Always schedule the shortest job.

8/46

Shortest Job First (SJF)

Always schedule the shortest job.

.

J2: -

J3:

8/46

Shortest Job First (SJF)

Always schedule the shortest job.

8/46

Shortest Job First (SJF)

Always schedule the shortest job.

8/46

Shortest Job First (SJF)

Always schedule the shortest job.

0 10 20 30 40 50 60 ms

What is the average Tiumaround?

8/46

Shortest Job First (SJF)

Always schedule the shortest job.

0 10 20 30 40 50 60 ms

What is the average Tiurnaround? Problem solved!

8/46

What if jobs arrive later?

9/46

What if jobs arrive later?

Assume we have three tasks, one arrive at time 0 and takes 30 ms to execute. Two
arrive at time 10 and take 10 ms each.

J1:
J2:

J3:

9/46

What if jobs arrive later?

Assume we have three tasks, one arrive at time 0 and takes 30 ms to execute. Two
arrive at time 10 and take 10 ms each.

o [

J2:

J3:

9/46

What if jobs arrive later?

Assume we have three tasks, one arrive at time 0 and takes 30 ms to execute. Two
arrive at time 10 and take 10 ms each.

9/46

What if jobs arrive later?

Assume we have three tasks, one arrive at time 0 and takes 30 ms to execute. Two
arrive at time 10 and take 10 ms each.

9/46

What if jobs arrive later?

Assume we have three tasks, one arrive at time 0 and takes 30 ms to execute. Two
arrive at time 10 and take 10 ms each.

0 10 20 30 40 50 60 ms

We need to preempt the execution of a job.

9/46

Shortest Time-to-Completion First (STCF)

Let's always schedule the task that has the shortest time left to completion.

J1:
J2:

J3:

10/46

Shortest Time-to-Completion First (STCF)

Let's always schedule the task that has the shortest time left to completion.

n: [[]
J2: -
J3: I:l

10/46

Shortest Time-to-Completion First (STCF)

Let's always schedule the task that has the shortest time left to completion.

J1: - -
J2: -
J3: I:l

0 10 20 30 40 50 60 ms

The policy is also known as Preemptive Shortest Job First (PSJF)

10/46

STCF - optimal policy

If we actually know the total execution time of each job as they arrive, then

11/46

STCF - optimal policy

If we actually know the total execution time of each job as they arrive, then

Shortest Time-to-Completion First is an optimal policy.

11/46

STCF - optimal policy

If we actually know the total execution time of each job as they arrive, then
Shortest Time-to-Completion First is an optimal policy.

The problem is that we do not know the total execution time aforehand.

11/46

STCF - optimal policy

If we actually know the total execution time of each job as they arrive, then
Shortest Time-to-Completion First is an optimal policy.
The problem is that we do not know the total execution time aforehand.

There might be more important metrics than turnaround time.

11/46

Talk about ...

DIGITALLY |
REMASTERED

12/ 46

In an interactive environment we might want to minimize response time.

13/46

In an interactive environment we might want to minimize response time.

Tresponse — Tﬁrst scheduled — Tarrival

13/46

In an interactive environment we might want to minimize response time.

Tresponse — Tﬁrst scheduled — Tarrival

The response might not be completed unless the job completes but it's an ok metrics.

13/46

Try Shortest Job First

Assume we have three jobs that all arrive at time 0 and all take 40 ms to complete.

14 /46

Try Shortest Job First

Assume we have three jobs that all arrive at time 0 and all take 40 ms to complete.

0 40 80 120 ms

14 /46

Try Shortest Job First

Assume we have three jobs that all arrive at time 0 and all take 40 ms to complete.

0 40 80 120 ms

14 /46

Try Shortest Job First

Assume we have three jobs that all arrive at time 0 and all take 40 ms to complete.

0 40 80 120 ms

14 /46

Try Shortest Job First

Assume we have three jobs that all arrive at time 0 and all take 40 ms to complete.

0 40 80 120 ms

What is the average response time?

14 /46

Preempt a job in order to improve response time, give each job a time-slice of 10 ms.

15 /46

Preempt a job in order to improve response time, give each job a time-slice of 10 ms.

.

J2: -

J3:

0 40 80 120 ms

15 /46

Preempt a job in order to improve response time, give each job a time-slice of 10 ms.

0 40 80 120 ms

15 /46

Preempt a job in order to improve response time, give each job a time-slice of 10 ms.

0 40 80 120 ms

15 /46

Preempt a job in order to improve response time, give each job a time-slice of 10 ms.

0 40 80 120 ms

15 /46

Preempt a job in order to improve response time, give each job a time-slice of 10 ms.

0 40 80 120 ms

15 /46

Preempt a job in order to improve response time, give each job a time-slice of 10 ms.

0 40 80 120 ms

15 /46

Preempt a job in order to improve response time, give each job a time-slice of 10 ms.

0 40 80 120 ms

What is the average response time?

15 /46

Preempt a job in order to improve response time, give each job a time-slice of 10 ms.

0 40 80 120 ms

What is the average response time? What is the average turnaround time?

15 /46

Preempt a job in order to improve response time, give each job a time-slice of 10 ms.

0 40 80 120 ms

What is the average response time? What is the average turnaround time?

How to choose the time-slice?
15/46

6103 062

sad day
the rolling stones
you can't always get
what you want

16 /46

processes do |/O

Assume we have two processes, each take 40 ms of CPU time but one will do
|/O-operations every 10 ms.

J1:

J2:

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

17/46

processes do |/O

Assume we have two processes, each take 40 ms of CPU time but one will do
|/O-operations every 10 ms.

J1: -

J2:

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

17/46

processes do |/O

Assume we have two processes, each take 40 ms of CPU time but one will do
|/O-operations every 10 ms.

J1: - /0

J2:

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

17/46

processes do |/O

Assume we have two processes, each take 40 ms of CPU time but one will do
|/O-operations every 10 ms.

o [l vo Il

J2:

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

17/46

processes do |/O

Assume we have two processes, each take 40 ms of CPU time but one will do
|/O-operations every 10 ms.

11, - 1/0 - 1/0

J2:

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

17/46

processes do |/O

Assume we have two processes, each take 40 ms of CPU time but one will do
|/O-operations every 10 ms.

. I vo [vo [

J2:

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

17/46

processes do |/O

Assume we have two processes, each take 40 ms of CPU time but one will do
|/O-operations every 10 ms.

11, - 1/0 - 1/0 - 1/0

J2:

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

17/46

processes do |/O

Assume we have two processes, each take 40 ms of CPU time but one will do
|/O-operations every 10 ms.

. I vo [vo [vo [

J2:

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

17/46

processes do |/O

Assume we have two processes, each take 40 ms of CPU time but one will do
|/O-operations every 10 ms.

. I vo [vo [vo [

J2: ‘

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

17/46

deschedule when initiate |/0

An |/O-operation will take time to complete and we (the CPU) could do some useful
work while a process is waiting.

18/46

deschedule when initiate |/0

An |/O-operation will take time to complete and we (the CPU) could do some useful
work while a process is waiting.

scheduled exit

I/O initiate

|/O completed

blocked

18/46

deschedule when initiate |/0

An |/O-operation will take time to complete and we (the CPU) could do some useful
work while a process is waiting.

scheduled exit

I/O initiate

|/O completed

blocked

A process is descheduled if it is preempted or if it initiates a |/O-operation.

18/46

much better

J1:

J2:

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

19/46

much better

J1: -

J2:

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

19/46

much better

J1: - /0
J2: I:l

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

19/46

much better

e ™
J2: I:l

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

19/46

much better

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

19/46

much better

o I vo I vo I

J2: ‘ ‘ ‘ ‘

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

19/46

much better

o I vo I vo I 1
J2: ‘ ‘ ‘ ‘ I:l

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

19/46

much better

o I vo I vo I vo I
J2: ‘ ‘ ‘ ‘ I:l

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

19/46

much better

2 o oIl oIl
PSS BN BEE B

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

19/46

the challenge

Ideal world:

@ Each job takes an equal amount of
time.

20/ 46

the challenge

Ideal world:

@ Each job takes an equal amount of
time.

@ All jobs arrive at the same time.

20/ 46

the challenge

Ideal world:

@ Each job takes an equal amount of
time.

@ All jobs arrive at the same time.

@ A job will run to completion.

20/ 46

the challenge

Ideal world:

@ Each job takes an equal amount of
time.

@ All jobs arrive at the same time.
@ A job will run to completion.

@ The jobs only use the CPU (no 1/0
etc).

20/ 46

the challenge

Ideal world:

@ Each job takes an equal amount of
time.

@ All jobs arrive at the same time.
@ A job will run to completion.

@ The jobs only use the CPU (no I/0
etc).
@ The run-time of each job is known.

20/ 46

the challenge

Ideal world:

@ Each job takes an equal amount of
time.

@ All jobs arrive at the same time.
@ A job will run to completion.

@ The jobs only use the CPU (no I/0
etc).
@ The run-time of each job is known.

20/ 46

the challenge

Ideal world: Real world:

@ Each job takes an equal amount of
time.

@ All jobs arrive at the same time.
@ A job will run to completion.

@ The jobs only use the CPU (no I/0
etc).
@ The run-time of each job is known.

20/46

the challenge

Ideal world: Real world:

@ Each job takes an equal amount of
time.

@ Jobs take different amount of time.

@ All jobs arrive at the same time.
@ A job will run to completion.

@ The jobs only use the CPU (no I/0
etc).
@ The run-time of each job is known.

20/46

the challenge

Ideal world: Real world:

@ Each job takes an equal amount of
time.

@ Jobs take different amount of time.

. . . @ Jobs arrive at different time.
@ All jobs arrive at the same time.

@ A job will run to completion.

@ The jobs only use the CPU (no I/0
etc).
@ The run-time of each job is known.

20/46

the challenge

Ideal world: Real world:

@ Each job takes an equal amount of
time.

@ Jobs take different amount of time.
i] i @ Jobs arrive at different time.
@ All jobs arrive at the same time.
. . . @ We can preempt job.
@ A job will run to completion.
@ The jobs only use the CPU (no I/0
etc).

@ The run-time of each job is known.

20/46

the challenge

Ideal world: Real world:

@ Each job takes an equal amount of
time.

@ Jobs take different amount of time.

. . . @ Jobs arrive at different time.
@ All jobs arrive at the same time.)
@ We can preempt job.

@ A job will run to completion.
e Jobs do use 1/0.

@ The jobs only use the CPU (no I/0
etc).
@ The run-time of each job is known.

20/46

the challenge

Ideal world: Real world:
¢ E:: job takes an equal amount of @ Jobs take different amount of time.
ime.
. . . @ Jobs arrive at different time.
@ All jobs arrive at the same time.
. . . @ We can preempt job.
@ A job will run to completion. Jobs d 10
° .
@ The jobs only use the CPU (no I/0 obs do use I/
@ Runt-time is not know.

etc).
@ The run-time of each job is known.

20/46

the challenge

Ideal world: Real world:
¢ E:: job takes an equal amount of @ Jobs take different amount of time.
ime.
. . . @ Jobs arrive at different time.
@ All jobs arrive at the same time.
. . . @ We can preempt job.
@ A job will run to completion. Jobs d 10
@ The jobs only use the CPU (no I/0 ® Jobs do use |/0.
etc). @ Runt-time is not know.
@ What do we do?

@ The run-time of each job is known.

20/46

the challenge

Ideal world: Real world:
¢ E:: job takes an equal amount of @ Jobs take different amount of time.
ime.
. . . @ Jobs arrive at different time.
@ All jobs arrive at the same time.
. . . @ We can preempt job.
@ A job will run to completion. Jobs d 10
@ The jobs only use the CPU (no I/0 ® Jobs do use |/0.
etc). @ Runt-time is not know.
@ What do we do?

@ The run-time of each job is known.

Can we design scheduling policies that give us good turn-around time and short
response time?

20/46

Multi-level Feedback Queue (MLFQ)

Goals:

21/46

Multi-level Feedback Queue (MLFQ)

Goals:

@ Good turnaround time - scheduled jobs so that jobs with short time to completion
are not delayed too much.

21/46

Multi-level Feedback Queue (MLFQ)

Goals:

@ Good turnaround time - scheduled jobs so that jobs with short time to completion
are not delayed too much.

@ Improve responsiveness of interactive jobs - schedule interactive processes more
often.

ldea:

21/46

Multi-level Feedback Queue (MLFQ)

Goals:

@ Good turnaround time - scheduled jobs so that jobs with short time to completion
are not delayed too much.

@ Improve responsiveness of interactive jobs - schedule interactive processes more
often.

ldea:

@ Multiple levels of priority - interactive jobs have higher priority.

21/46

Multi-level Feedback Queue (MLFQ)

Goals:

@ Good turnaround time - scheduled jobs so that jobs with short time to completion
are not delayed too much.

@ Improve responsiveness of interactive jobs - schedule interactive processes more
often.

Idea:
@ Multiple levels of priority - interactive jobs have higher priority.

o Each level uses round-robin to give processes an equal share.

21/46

Multi-level Feedback Queue (MLFQ)
Goals:
@ Good turnaround time - scheduled jobs so that jobs with short time to completion

are not delayed too much.
@ Improve responsiveness of interactive jobs - schedule interactive processes more

often.

Idea:
@ Multiple levels of priority - interactive jobs have higher priority.

o Each level uses round-robin to give processes an equal share.
@ Processes can be moved to a higher or lower level depending on their behavior.

21/46

Multi-level Feedback Queue (MLFQ)
Goals:
@ Good turnaround time - scheduled jobs so that jobs with short time to completion

are not delayed too much.
@ Improve responsiveness of interactive jobs - schedule interactive processes more

often.

Idea:
@ Multiple levels of priority - interactive jobs have higher priority.

o Each level uses round-robin to give processes an equal share.
@ Processes can be moved to a higher or lower level depending on their behavior.

How do we identify interactive processes and how do we make sure that they have high

priority?
21/46

Rules of the game: MLFQ

22/46

Rules of the game: MLFQ

Basic rules:

@ Rule 1: if Priority(A) > Priority(B) then A is scheduled for execution.

22/46

Rules of the game: MLFQ

Basic rules:

@ Rule 1: if Priority(A) > Priority(B) then A is scheduled for execution.
@ Rule 2: if Priority(A) = Priority(B) then A and B are scheduled in round-robin.

22/46

Rules of the game: MLFQ

Basic rules:

@ Rule 1: if Priority(A) > Priority(B) then A is scheduled for execution.
@ Rule 2: if Priority(A) = Priority(B) then A and B are scheduled in round-robin.
@ Rule 3: when a new job is created it starts with the highest priority.

22/46

Rules of the game: MLFQ

Basic rules:

@ Rule 1: if Priority(A) > Priority(B) then A is scheduled for execution.
@ Rule 2: if Priority(A) = Priority(B) then A and B are scheduled in round-robin.
@ Rule 3: when a new job is created it starts with the highest priority.

22/46

Rules of the game: MLFQ

Basic rules:

@ Rule 1: if Priority(A) > Priority(B) then A is scheduled for execution.
@ Rule 2: if Priority(A) = Priority(B) then A and B are scheduled in round-robin.
@ Rule 3: when a new job is created it starts with the highest priority.

Change priority (let’s try this)

@ Rule 4a: a job that has to be preempted (time-slice consumed) is moved to a
lower priority.

22/46

Rules of the game: MLFQ

Basic rules:

@ Rule 1: if Priority(A) > Priority(B) then A is scheduled for execution.
@ Rule 2: if Priority(A) = Priority(B) then A and B are scheduled in round-robin.
@ Rule 3: when a new job is created it starts with the highest priority.

Change priority (let’s try this)

@ Rule 4a: a job that has to be preempted (time-slice consumed) is moved to a
lower priority.

@ Rule 4b: a job that initiates a |/O-operation (or yields) remains on the same level.

22/46

fine, no problem ...

Q2:
Q1:

QO:

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

23/46

fine, no problem ...

o2 [N
Q1:

QO:

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

23/46

fine, no problem ...

o2 [N
ot [N

QO:

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

23/46

fine, no problem ...

o2 [N
ot [N
QO: -

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

23/46

fine, no problem ...

o2 [N
ot [N
Qo: LT]

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

23/46

fine, no problem ...

o2 [N
ot [N
Qo: LT T 1

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

23/46

fine, no problem ...

e [l]
ot [N
Qo: T]

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

23/46

fine, no problem ...

/0

e [l]
ot [N
Qo: T]

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

23/46

fine, no problem ...

/0

e [l]
ot [N
Q. T 1 [

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

23/46

fine, no problem ...

/0

e [N H i
ot [N
Q. T 1 [

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

23/46

fine, no problem ...

/0 1/0

e [N H i
ot [N
Q. T 1 [

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

23/46

fine, no problem ...

/0 1/0

e [N H i
ot [N
Qo: B N

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

23/46

fine, no problem ...

/0 1/0

e [l HE [
ot [N
Qo: B N

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

23/46

fine, no problem ...

/0 1/0

o I HE &=

1/0
o 1l /
. I .

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

23/46

fine, no problem ...

/0 1/0

o N H B TR
1/0

o 1l /

. I .

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

23/46

fine, no problem ...

1/0 1/0 1/0

o N H B TR
1/0

o 1l /

. I .

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

23/46

fine, no problem ...

1/0 1/0 1/0

v Il H I IDEE
1/0

o 1l /

- I e

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

23/46

fine, no problem ...

1/0 1/0 1/0

o [l HE A

/0 1/0
aL - / /
Qo BN BN

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

23/46

fine, no problem ...

1/0 1/0 1/0

« Il HE 1N

/0 1/0
aL - / /
Qo BN BN

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

23/46

@ Rule 5: after some time, move a job to the highest priority.

24 /46

@ Rule 5: after some time, move a job to the highest priority.
ol
Q1:

QO:

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

24 /46

@ Rule 5: after some time, move a job to the highest priority.

e Il
ot [N

QO:

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

24 /46

@ Rule 5: after some time, move a job to the highest priority.

e Il
ot [N
QO: -

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

24 /46

@ Rule 5: after some time, move a job to the highest priority.

e Il
ot [N
Qo: LT]

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

24 /46

@ Rule 5: after some time, move a job to the highest priority.

e Il
ot [N
Qo: T]

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

24 /46

@ Rule 5: after some time, move a job to the highest priority.

e [l]
ot [N
Qo: T]

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

24 /46

@ Rule 5: after some time, move a job to the highest priority.

/0

e [l]
ot [N
Qo: T]

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

24 /46

@ Rule 5: after some time, move a job to the highest priority.

/0

e [l]
ot [N
Q. T 1 [

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

24 /46

@ Rule 5: after some time, move a job to the highest priority.

/0

o [N H i
ot [N
Q. T 1 [

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

24 /46

@ Rule 5: after some time, move a job to the highest priority.

1/0 1/0

o [N H i
ot [N
Q. T 1 [

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

24 /46

@ Rule 5: after some time, move a job to the highest priority.

1/0 1/0

o [N H i
ot [N
Qo: B N

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

24 /46

@ Rule 5: after some time, move a job to the highest priority.

1/0 1/0

o [N HE [
ot [N
Qo: B N

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

24 /46

@ Rule 5: after some time, move a job to the highest priority.

1/0 1/0

o Il HE 0

O
o 1l !
- I e

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

24 /46

@ Rule 5: after some time, move a job to the highest priority.

1/0 1/0

o B H B TR

O
o 1l !
- I e

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

24 /46

@ Rule 5: after some time, move a job to the highest priority.

/0 1/0 1/0

o B H B TR

O
o 1l !
- I e

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

24 /46

@ Rule 5: after some time, move a job to the highest priority.

/0 1/0 /0

< Il H 1 Il
o7
S /o

" boosted

Q. I EE

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

24 /46

@ Rule 5: after some time, move a job to the highest priority.

1/0 1/0 1/0

< B HE B
o7

o 1l /o

- I e

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

24 /46

@ Rule 5: after some time, move a job to the highest priority.

/0 1/0 1/0 /O

< Il HE B
o7
S /o

" boosted

Q. I EE

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

24 /46

@ Rule 5: after some time, move a job to the highest priority.

/0 1/0 1/0 /O

< Il HE B
o7
S /o

" boosted

Q. I EE

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

24 /46

trick the scheduler

If the scheduler was constructed given the rules 1-5, how would you write your
program?

25 /46

trick the scheduler

If the scheduler was constructed given the rules 1-5, how would you write your
program?

@ Rule 1: if Priority(A) > Priority(B) then A is scheduled for execution.

25 /46

trick the scheduler

If the scheduler was constructed given the rules 1-5, how would you write your
program?

@ Rule 1: if Priority(A) > Priority(B) then A is scheduled for execution.
@ Rule 2: if Priority(A) = Priority(B) then A and B are scheduled in round-robin.

25 /46

trick the scheduler

If the scheduler was constructed given the rules 1-5, how would you write your
program?

@ Rule 1: if Priority(A) > Priority(B) then A is scheduled for execution.
@ Rule 2: if Priority(A) = Priority(B) then A and B are scheduled in round-robin.

@ Rule 3: when a new job is created it starts with the highest priority.

25 /46

trick the scheduler

If the scheduler was constructed given the rules 1-5, how would you write your
program?

@ Rule 1: if Priority(A) > Priority(B) then A is scheduled for execution.
@ Rule 2: if Priority(A) = Priority(B) then A and B are scheduled in round-robin.
@ Rule 3: when a new job is created it starts with the highest priority.

@ Rule 4a: a job that has to be preempted (time-slice consumed) is moved to a
lower priority.

25 /46

trick the scheduler

If the scheduler was constructed given the rules 1-5, how would you write your
program?

Rule 1: if Priority(A) > Priority(B) then A is scheduled for execution.
Rule 2: if Priority(A) = Priority(B) then A and B are scheduled in round-robin.

Rule 3: when a new job is created it starts with the highest priority.

Rule 4a: a job that has to be preempted (time-slice consumed) is moved to a
lower priority.

Rule 4b: a job that initiates a |/O-operation (or yields) remains on the same level.
@ Rule 5: after some time, move a job to the highest priority.

25 /46

let’s try this

A job is given a allotted time, to consume at each priority level.

26 /46

let’s try this

A job is given a allotted time, to consume at each priority level.

@ Rule 4: a job that has consumed its allotted time is moved to a lower priority.

26 /46

let’s try this

A job is given a allotted time, to consume at each priority level.
@ Rule 4: a job that has consumed its allotted time is moved to a lower priority.

@ Rule 5: after some time, move all jobs to the highest priority.

26 /46

tune the scheduler

Setting the parameters:

27 /46

tune the scheduler

Setting the parameters:

How long is a time slice?
How many queues should there be?

How long time should a allotted time be in a specified queue?

How often should a job be boosted to the highest priority?

27 /46

Change the perspective

What if:

28 /46

Change the perspective

What if:

@ we stop focusing on turnaround time and reaction and

28 /46

Change the perspective

What if:
@ we stop focusing on turnaround time and reaction and

@ start treating every job in a fair manner.

28 /46

Change the perspective

What if:
@ we stop focusing on turnaround time and reaction and

@ start treating every job in a fair manner.

Give each job fair share.

28 /46

Justice for all

29 /46

Proportional share

Let's have a lottery:

30/46

Proportional share

Let's have a lottery:

30/46

and the winner is

We divide the tickets among the jobs: A - 35 tickets, B - 15 tickets and C - 50 tickets.

31/46

and the winner is

We divide the tickets among the jobs: A - 35 tickets, B - 15 tickets and C - 50 tickets.

The scheduler selects a winning ticket by random.

31/46

and the winner is

We divide the tickets among the jobs: A - 35 tickets, B - 15 tickets and C - 50 tickets.

The scheduler selects a winning ticket by random.

And the winner is: 23, 56, 13, 73, 8, 82, 17, 34,

31/46

and the winner is

We divide the tickets among the jobs: A - 35 tickets, B - 15 tickets and C - 50 tickets.

The scheduler selects a winning ticket by random.

And the winner is: 23, 56, 13, 73, 8, 82, 17, 34,

31/46

flexibility

@ A new job can be given a set of tickets as long as we keep track of how many
tickets we have.

32/46

flexibility

@ A new job can be given a set of tickets as long as we keep track of how many
tickets we have.

o We can give a user a set of tickets and allow the user to distribute them among
its jobs.

32/46

flexibility

@ A new job can be given a set of tickets as long as we keep track of how many
tickets we have.

o We can give a user a set of tickets and allow the user to distribute them among
its jobs.

@ Each user can have its local tickets and then have a local lottery.

32/46

flexibility

@ A new job can be given a set of tickets as long as we keep track of how many
tickets we have.

o We can give a user a set of tickets and allow the user to distribute them among
its jobs.

@ Each user can have its local tickets and then have a local lottery.

@ We could allow each user to create new tickets, i.e. inflation, if we trust each
other.

How to implement?

32/46

Stand in line

@ Each job is given a number that
represents the number of tickets it
owns.

@ All jobs are lined up i a row.

@ Pick a random number from zero to
the total number of tickets.

@ Walk down the line and select the
winner.

How does this work?

33/46

Why random?

34/46

A deterministic approach: stride scheduling

@ Each job is given a stride value, the higher the stride the lower the priority.

35/46

A deterministic approach: stride scheduling

@ Each job is given a stride value, the higher the stride the lower the priority.

@ Each job keeps a pass value initially set to 0.

35/46

A deterministic approach: stride scheduling

@ Each job is given a stride value, the higher the stride the lower the priority.
@ Each job keeps a pass value initially set to 0.

@ In each round the job with the lowest pass value is selected and ...

35/46

A deterministic approach: stride scheduling

Each job is given a stride value, the higher the stride the lower the priority.
Each job keeps a pass value initially set to 0.

In each round the job with the lowest pass value is selected and ...

... the pass value is incremented by its stride value.

35/46

A deterministic approach: stride scheduling

Each job is given a stride value, the higher the stride the lower the priority.
Each job keeps a pass value initially set to 0.

In each round the job with the lowest pass value is selected and ...

... the pass value is incremented by its stride value.

A low stride value will make it more likely to be scheduled soon again.

35/46

Real-time systems

36/46

Real-time systems

In real time scheduling we introduce a new requirement: things should be completed
within a given time period.

36/46

Real-time systems

In real time scheduling we introduce a new requirement: things should be completed
within a given time period.

@ Hard : all deadlines should be met, missing a deadline is a failure.

36/46

Real-time systems

In real time scheduling we introduce a new requirement: things should be completed
within a given time period.

@ Hard : all deadlines should be met, missing a deadline is a failure.

@ Soft : deadlines could be missed but the application should be notified and be
able to take actions.

36/46

Real-time systems

In real time scheduling we introduce a new requirement: things should be completed
within a given time period.

@ Hard : all deadlines should be met, missing a deadline is a failure.

@ Soft : deadlines could be missed but the application should be notified and be
able to take actions.

We often have real-time requirements that are simply met since we happen to have the
available resources.

36/46

Real-time scheduling

37/46

Real-time scheduling

In hard real-time systems, tasks are known aforehand and described by a triplet (e, d, p)

37/46

Real-time scheduling

In hard real-time systems, tasks are known aforehand and described by a triplet (e, d, p)

@ e: the worst case execution time for the task.

37/46

Real-time scheduling

In hard real-time systems, tasks are known aforehand and described by a triplet (e, d, p)
@ e: the worst case execution time for the task.

@ d: the deadline, when in the future do we need to finish.

37/46

Real-time scheduling

In hard real-time systems, tasks are known aforehand and described by a triplet (e, d, p)
@ e: the worst case execution time for the task.
@ d: the deadline, when in the future do we need to finish.

@ p: the period, how often should the task be scheduled.

37/46

Real-time scheduling

In hard real-time systems, tasks are known aforehand and described by a triplet (e, d, p)
@ e: the worst case execution time for the task.
@ d: the deadline, when in the future do we need to finish.

@ p: the period, how often should the task be scheduled.

37/46

Real-time scheduling

In hard real-time systems, tasks are known aforehand and described by a triplet (e, d, p)
@ e: the worst case execution time for the task.
@ d: the deadline, when in the future do we need to finish.

@ p: the period, how often should the task be scheduled.

0 d p 2p 3p

37/46

Real-time scheduling

In hard real-time systems, tasks are known aforehand and described by a triplet (e, d, p)
@ e: the worst case execution time for the task.
@ d: the deadline, when in the future do we need to finish.

@ p: the period, how often should the task be scheduled.

| ! | ! | ! | !
[T [T [T

0 d p p+d 2p 2p+d 3p 3p+d

37/46

Real-time scheduling

In hard real-time systems, tasks are known aforehand and described by a triplet (e, d, p)
@ e: the worst case execution time for the task.
@ d: the deadline, when in the future do we need to finish.

@ p: the period, how often should the task be scheduled.

0 d p p+d 2p 2p+d 3p 3p+d

37/46

Real-time scheduling

In hard real-time systems, tasks are known aforehand and described by a triplet (e, d, p)
@ e: the worst case execution time for the task.
@ d: the deadline, when in the future do we need to finish.

@ p: the period, how often should the task be scheduled.

0 d p p+d 2p 2p+d 3p 3p+d

37/46

Real-time scheduling

In hard real-time systems, tasks are known aforehand and described by a triplet (e, d, p)
@ e: the worst case execution time for the task.
@ d: the deadline, when in the future do we need to finish.

@ p: the period, how often should the task be scheduled.

i . im :

0 d p p+d 2p 2p+d 3p 3p+d

d < p : constrained, d = p default, d > p several out-standing

37/46

Real-time Scheduling

Given a set of tasks: T1: (10,30, 40), T2: (20,60,100), T3: (60,200,200): , find the
scheduling.

38/46

Real-time Scheduling

Given a set of tasks: T1: (10,30, 40), T2: (20,60,100), T3: (60,200,200): , find the
scheduling.

T1:
T2:
T3:

0 20 40 60 80 100 120 140 160 180 200

38/46

Real-time Scheduling

Given a set of tasks: T1: (10,30, 40), T2: (20,60,100), T3: (60,200,200): , find the
scheduling.

T1. I
T2:
T3:

0 20 40 60 80 100 120 140 160 180 200

38/46

Real-time Scheduling

Given a set of tasks: T1: (10,30, 40), T2: (20,60,100), T3: (60,200,200): , find the
scheduling.

71: N
T2:]
T3:

0 20 40 60 80 100 120 140 160 180 200

38/46

Real-time Scheduling

Given a set of tasks: T1: (10,30, 40), T2: (20,60,100), T3: (60,200,200): , find the

scheduling.

T1: N

2. N
T3: N

0 20 40 60 80 100 120 140 160 180 200

38/46

Real-time Scheduling

Given a set of tasks: T1: (10,30, 40), T2: (20,60,100), T3: (60,200,200): , find the

scheduling.

T1: N]
T2 N

T3: N

0 20 40 60 80 100 120 140 160 180 200

38/46

Real-time Scheduling

Given a set of tasks: T1: (10,30, 40), T2: (20,60,100), T3: (60,200,200): , find the

scheduling.

T1. I]

2.

T3: N

0 20 40 60 80 100 120 140 160 180 200

38/46

Real-time Scheduling

Given a set of tasks: T1: (10,30, 40), T2: (20,60,100), T3: (60,200,200): , find the

scheduling.

T1. Il]]
2.

T3: N

0 20 40 60 80 100 120 140 160 180 200

38/46

Real-time Scheduling

Given a set of tasks: T1: (10,30, 40), T2: (20,60,100), T3: (60,200,200): , find the

scheduling.

T1. Il]]
2.

T3: N [

0 20 40 60 80 100 120 140 160 180 200

38/46

Real-time Scheduling

Given a set of tasks: T1: (10,30, 40), T2: (20,60,100), T3: (60,200,200): , find the

scheduling.
T1. I]]
2. L1
T3: B N

0 20 40 60 80 100 120 140 160 180 200

38/46

Real-time Scheduling

Given a set of tasks: T1: (10,30, 40), T2: (20,60,100), T3: (60,200,200): , find the

scheduling.
T1. Il]]]
2. 1
T3: N EEE =

0 20 40 60 80 100 120 140 160 180 200

38/46

Real-time Scheduling

Given a set of tasks: T1: (10,30, 40), T2: (20,60,100), T3: (60,200,200): , find the

scheduling.
T1. Il]]]
2. 1
T3: N EEE =]

0 20 40 60 80 100 120 140 160 180 200

38/46

Real-time Scheduling

Given a set of tasks: T1: (10,30, 40), T2: (20,60,100), T3: (60,200,200): , find the

scheduling.
T1. Il]]]]
2. 1
T3: N EEE =]

0 20 40 60 80 100 120 140 160 180 200

38/46

Strategies

Given that p = d i.e. a task must be completed within its period.

e Rate Monotonic Scheduling (RMS):
e Schedule the avilable task with the shortest period
o Always works if utilization is < 69% (actually less than n (21/" — 1)), where n is
the number of processes) could work for higher loads.
e Simpler to reason about, easy to implement.

39/46

Strategies

Given that p = d i.e. a task must be completed within its period.
e Rate Monotonic Scheduling (RMS):

e Schedule the avilable task with the shortest period

o Always works if utilization is < 69% (actually less than n (21/" — 1)), where n is
the number of processes) could work for higher loads.

e Simpler to reason about, easy to implement.

e Earliest Deadline First (EDF):

e Schedule based on the deadline, more freedom to choose tasks.
o Always works if utilization is < 100%.
o Used by Linux in the real-time extension (not in the regular system)

39/46

Strategies

Given that p = d i.e. a task must be completed within its period.
e Rate Monotonic Scheduling (RMS):

e Schedule the avilable task with the shortest period

o Always works if utilization is < 69% (actually less than n (21/" — 1)), where n is
the number of processes) could work for higher loads.

e Simpler to reason about, easy to implement.

e Earliest Deadline First (EDF):

e Schedule based on the deadline, more freedom to choose tasks.
o Always works if utilization is < 100%.
o Used by Linux in the real-time extension (not in the regular system)

39/46

Rate Monotonic Scheduling (RMS)

Assume we have tasks: T1: (10,40,40), T2: (20,60,60), T3: (30,80, 80).

40/ 46

Rate Monotonic Scheduling (RMS)

Assume we have tasks: T1: (10,40,40), T2: (20,60,60), T3: (30,80, 80).

10/40 + 20/60 + 30/80 = 6/24 + 8/24 + 9/24 = 23 /24

40/ 46

Rate Monotonic Scheduling (RMS)

Assume we have tasks: T1: (10,40,40), T2: (20,60,60), T3: (30,80, 80).

10/40 + 20/60 + 30/80 = 6/24 + 8/24 + 9/24 = 23 /24

TI1: -
. [
T3: I:l

0 10 20 30 40 50 60 70 80 90 100 110 120

40/ 46

Rate Monotonic Scheduling (RMS)

Assume we have tasks: T1: (10,40,40), T2: (20,60,60), T3: (30,80, 80).

10/40 + 20/60 + 30/80 = 6/24 + 8/24 + 9/24 = 23 /24

T1: - -
[
T3: I:l

0 10 20 30 40 50 60 70 80 90 100 110 120

40/ 46

Rate Monotonic Scheduling (RMS)

Assume we have tasks: T1: (10,40,40), T2: (20,60,60), T3: (30,80, 80).

10/40 + 20/60 + 30/80 = 6/24 + 8/24 + 9/24 = 23 /24

T1: - -
[
T3 B

0 10 20 30 40 50 60 70 80 90 100 110 120

40/ 46

Rate Monotonic Scheduling (RMS)

Assume we have tasks: T1: (10,40,40), T2: (20,60,60), T3: (30,80, 80).

10/40 + 20/60 + 30/80 = 6/24 + 8/24 + 9/24 = 23 /24

T1: - -
. L]
T3: I:l I:l

0 10 20 30 40 50 60 70 80 90 100 110 120

40/ 46

Rate Monotonic Scheduling (RMS)

Assume we have tasks: T1: (10,40,40), T2: (20,60,60), T3: (30,80, 80).

10/40 + 20/60 + 30/80 = 6/24 + 8/24 + 9/24 = 23 /24

T1: - -
[]
T3: I:l I:l T3 missed deadline

0 10 20 30 40 50 60 70 80 90 100 110 120

40/ 46

Earliest Deadline First (EDF)

Assume we have tasks: T1: (10,40,40), T2: (20,60,60), T3: (30,80, 80).

41/46

Earliest Deadline First (EDF)

Assume we have tasks: T1: (10,40,40), T2: (20,60,60), T3: (30,80, 80).

10/40 + 20/60 + 30/80 = 6/24 + 8/24 + 9/24 = 23 /24

41/46

Earliest Deadline First (EDF)

Assume we have tasks: T1: (10,40,40), T2: (20,60,60), T3: (30,80, 80).

10/40 + 20/60 + 30/80 = 6/24 + 8/24 + 9/24 = 23 /24

TI1: -
. [
T3: I:l

0 10 20 30 40 50 60 70 80 90 100 110 120

41/46

Earliest Deadline First (EDF)

Assume we have tasks: T1: (10,40,40), T2: (20,60,60), T3: (30,80, 80).

10/40 + 20/60 + 30/80 = 6/24 + 8/24 + 9/24 = 23 /24

T1: - -
[
T3: I:l

0 10 20 30 40 50 60 70 80 90 100 110 120

41/46

Earliest Deadline First (EDF)

Assume we have tasks: T1: (10,40,40), T2: (20,60,60), T3: (30,80, 80).

10/40 + 20/60 + 30/80 = 6/24 + 8/24 + 9/24 = 23 /24

T1: - -
[
T3 B

0 10 20 30 40 50 60 70 80 90 100 110 120

41/46

Earliest Deadline First (EDF)

Assume we have tasks: T1: (10,40,40), T2: (20,60,60), T3: (30,80, 80).

10/40 + 20/60 + 30/80 = 6/24 + 8/24 + 9/24 = 23 /24

T1: - -
[
T3]]

0 10 20 30 40 50 60 70 80 90 100 110 120

41/46

Earliest Deadline First (EDF)

Assume we have tasks: T1: (10,40,40), T2: (20,60,60), T3: (30,80, 80).

10/40 + 20/60 + 30/80 = 6/24 + 8/24 + 9/24 = 23 /24

T1: - -
[[]
T3]]

0 10 20 30 40 50 60 70 80 90 100 110 120

41/46

Earliest Deadline First (EDF)

Assume we have tasks: T1: (10,40,40), T2: (20,60,60), T3: (30,80, 80).

10/40 + 20/60 + 30/80 = 6/24 + 8/24 + 9/24 = 23 /24

T1: - -
. L
T3]]

0 10 20 30 40 50 60 70 80 90 100 110 120

41/46

Earliest Deadline First (EDF)

Assume we have tasks: T1: (10,40,40), T2: (20,60,60), T3: (30,80, 80).

10/40 + 20/60 + 30/80 = 6/24 + 8/24 + 9/24 = 23 /24

T1: - - -
. L
T3]]

0 10 20 30 40 50 60 70 80 90 100 110 120

41/46

42 /46

With what accuracy can we determine worst case excution time?

42 /46

With what accuracy can we determine worst case excution time?

Should we be conservative or take a chance?

42 /46

With what accuracy can we determine worst case excution time?
Should we be conservative or take a chance?

Can we handle a dynamic set of tasks?

42 /46

With what accuracy can we determine worst case excution time?
Should we be conservative or take a chance?
Can we handle a dynamic set of tasks?

What happens when we have critical resources that are protected by locks?

42 /46

Multi-core architectures

43/46

Multi-core architectures

Scheduling for a multi-core architecture more problematic (or rather more problematic
to achieve high utilization).

Why?

43/46

Scheduling in Linux

How is scheduling managed in a Linux system?

44 /46

Scheduling in Linux

How is scheduling managed in a Linux system?

@ O(n) scheduler: the original scheduler, did not scale well.

44 /46

Scheduling in Linux

How is scheduling managed in a Linux system?

(n) scheduler: the original scheduler, did not scale well.

e O
@ O(1) scheduler: multi-level feedback queues, dynamic priority, used up to version
2.6

44 /46

Scheduling in Linux

How is scheduling managed in a Linux system?

@ O(n) scheduler: the original scheduler, did not scale well.

@ O(1) scheduler: multi-level feedback queues, dynamic priority, used up to version
2.6

e CFS: the completely fair scheduler, O(lg(n)), default today.

44 /46

Scheduling in Linux

How is scheduling managed in a Linux system?

@ O(n) scheduler: the original scheduler, did not scale well.

@ O(1) scheduler: multi-level feedback queues, dynamic priority, used up to version
2.6

e CFS: the completely fair scheduler, O(lg(n)), default today.

@ BF scheduler: no I will not tell you what it stands for.

44 /46

The Completely Fair Scheduler

@ Similar to stride scheduler but uses a red-black tree to order processes.

45 /46

The Completely Fair Scheduler

@ Similar to stride scheduler but uses a red-black tree to order processes.

@ Will keep processes on the same core if it thinks it's a good choice.

45 /46

The Completely Fair Scheduler

@ Similar to stride scheduler but uses a red-black tree to order processes.

@ Will keep processes on the same core if it thinks it's a good choice.
@ Scheduling classes:

45 /46

The Completely Fair Scheduler

@ Similar to stride scheduler but uses a red-black tree to order processes.

@ Will keep processes on the same core if it thinks it's a good choice.
@ Scheduling classes:
o SCHED_FIFOQ, SCHED_RR: high priority classes (often called real-time processes)

45 /46

The Completely Fair Scheduler

@ Similar to stride scheduler but uses a red-black tree to order processes.

@ Will keep processes on the same core if it thinks it's a good choice.
@ Scheduling classes:

o SCHED_FIFOQ, SCHED_RR: high priority classes (often called real-time processes)
e SCHED_NORMAL: all the regular interactive processes

45 /46

The Completely Fair Scheduler

@ Similar to stride scheduler but uses a red-black tree to order processes.
@ Will keep processes on the same core if it thinks it's a good choice.
@ Scheduling classes:

o SCHED_FIFOQ, SCHED_RR: high priority classes (often called real-time processes)
e SCHED_NORMAL: all the regular interactive processes

e SCHED_BATCH: processes that only run if there are no interactive processes available.

45 /46

The Completely Fair Scheduler

@ Similar to stride scheduler but uses a red-black tree to order processes.
@ Will keep processes on the same core if it thinks it's a good choice.
@ Scheduling classes:

SCHED_FIFO, SCHED_RR: high priority classes (often called real-time processes)
SCHED_NORMAL: all the regular interactive processes

SCHED_BATCH: processes that only run if there are no interactive processes available.
SCHED_IDLE: if we've got nothing else to do.

45 /46

The Completely Fair Scheduler

@ Similar to stride scheduler but uses a red-black tree to order processes.
@ Will keep processes on the same core if it thinks it's a good choice.
@ Scheduling classes:

SCHED_FIFO, SCHED_RR: high priority classes (often called real-time processes)
SCHED_NORMAL: all the regular interactive processes

SCHED_BATCH: processes that only run if there are no interactive processes available.
SCHED_IDLE: if we've got nothing else to do.

45 /46

Summary Scheduling

46 / 46

Summary Scheduling

@ Bonnie Tyler: Turnaround, every now and then ...

46 /46

Summary Scheduling

@ Bonnie Tyler: Turnaround, every now and then ...

@ Bob Marley: Talking 'bout reaction

46 /46

Summary Scheduling

@ Bonnie Tyler: Turnaround, every now and then ...
@ Bob Marley: Talking 'bout reaction

@ Rolling Stones: You can’t always get what you want.

46 /46

Summary Scheduling

Bonnie Tyler: Turnaround, every now and then ...
Bob Marley: Talking 'bout reaction
Rolling Stones: You can’t always get what you want.

Metallica: Justice for all.

46 /46

Summary Scheduling

Bonnie Tyler: Turnaround, every now and then ...
Bob Marley: Talking 'bout reaction
Rolling Stones: You can’t always get what you want.

Metallica: Justice for all.

Leif “Loket” Olsson: a lottery might work ok

46 / 46

Summary Scheduling

Bonnie Tyler: Turnaround, every now and then ...
Bob Marley: Talking 'bout reaction

Rolling Stones: You can’t always get what you want.
Metallica: Justice for all.

Leif “Loket” Olsson: a lottery might work ok

Real-time scheduling: if we actually know the maximum execution time, the
deadline and the period.

46 / 46

Summary Scheduling

Bonnie Tyler: Turnaround, every now and then ...
Bob Marley: Talking 'bout reaction

Rolling Stones: You can’t always get what you want.
Metallica: Justice for all.

Leif “Loket” Olsson: a lottery might work ok

Real-time scheduling: if we actually know the maximum execution time, the
deadline and the period.

@ Multi-core schedulers: you have to think twice before selecting a process.

46 / 46

Summary Scheduling

Bonnie Tyler: Turnaround, every now and then ...
Bob Marley: Talking 'bout reaction

Rolling Stones: You can’t always get what you want.
Metallica: Justice for all.

Leif “Loket” Olsson: a lottery might work ok

Real-time scheduling: if we actually know the maximum execution time, the
deadline and the period.

Multi-core schedulers: you have to think twice before selecting a process.

e Linux: Completely Fair Scheduler, schedules in O(lg(n)) time, similar to stride
scheduling.

46 / 46

