Scheduling

Johan Montelius

KTH

2021

1/46



process scheduling

2/46



process scheduling

Problem:

2/46



process scheduling

Problem:

We have a set of processes: they all want to execute immediately and they do not
want to be interrupted.

2/46



process scheduling

Problem:

We have a set of processes: they all want to execute immediately and they do not
want to be interrupted.

Solution:

2/46



process scheduling

Problem:

We have a set of processes: they all want to execute immediately and they do not
want to be interrupted.

Solution:

Let's keep some waiting and let's interrupt them.

2/46



process scheduling

Problem:

We have a set of processes: they all want to execute immediately and they do not
want to be interrupted.

Solution:

Let's keep some waiting and let's interrupt them.

Question:

2/46



process scheduling

Problem:

We have a set of processes: they all want to execute immediately and they do not
want to be interrupted.

Solution:

Let's keep some waiting and let's interrupt them.

Question:

@ What metrics are important?

2/46



process scheduling

Problem:

We have a set of processes: they all want to execute immediately and they do not
want to be interrupted.

Solution:

Let's keep some waiting and let's interrupt them.

Question:

@ What metrics are important?

@ Does it matter in what order we schedule processes?

2/46



process scheduling

Problem:

We have a set of processes: they all want to execute immediately and they do not
want to be interrupted.

Solution:

Let's keep some waiting and let's interrupt them.

Question:

@ What metrics are important?

@ Does it matter in what order we schedule processes?

@ Are there optimal solutions?
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The unrealistic assumption ...

Assume we have a set of jobs.

Each job takes an equal amount of time.
All jobs arrive at the same time.

A job will run to completion.

The jobs only use the CPU (no 1/0 etc).

The run-time of each job is known.

e 6 6 o o

This is unrealistic - we will relax these requirements.

3/46



...every now and then | get a little bit lonely

4/46



...every now and then | get a little bit lonely

BU/I//V/E TYLER

4/46



Performance metrics

Tturnaround — Tcompletion - Tarrival

How long time does it take to complete the job?
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Assume one task takes 30 ms to execute.
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What is the average Tiurnaround? Can we do better?
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Shortest Job First (SJF)

Always schedule the shortest job.

0 10 20 30 40 50 60 ms

What is the average Tiurnaround? Problem solved!
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What if jobs arrive later?

Assume we have three tasks, one arrive at time 0 and takes 30 ms to execute. Two
arrive at time 10 and take 10 ms each.

0 10 20 30 40 50 60 ms

We need to preempt the execution of a job.
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Shortest Time-to-Completion First (STCF)
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Shortest Time-to-Completion First (STCF)

Let's always schedule the task that has the shortest time left to completion.

J1: - -
J2: -
J3: I:l
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The policy is also known as Preemptive Shortest Job First (PSJF)
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STCF - optimal policy

If we actually know the total execution time of each job as they arrive, then ....
Shortest Time-to-Completion First is an optimal policy.
The problem is that we do not know the total execution time aforehand.

There might be more important metrics than turnaround time.

11/46



Talk about ...

DIGITALLY |
REMASTERED
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In an interactive environment we might want to minimize response time.
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In an interactive environment we might want to minimize response time.

Tresponse — Tﬁrst scheduled — Tarrival

The response might not be completed unless the job completes but it's an ok metrics.
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Preempt a job in order to improve response time, give each job a time-slice of 10 ms.

0 40 80 120 ms

What is the average response time? What is the average turnaround time?

How to choose the time-slice?
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processes do |/O

Assume we have two processes, each take 40 ms of CPU time but one will do
|/O-operations every 10 ms.
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deschedule when initiate |/0

An |/O-operation will take time to complete and we (the CPU) could do some useful
work while a process is waiting.
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deschedule when initiate |/0

An |/O-operation will take time to complete and we (the CPU) could do some useful
work while a process is waiting.

scheduled exit

I/O initiate

|/O completed

blocked

A process is descheduled if it is preempted or if it initiates a |/O-operation.
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¢ E:: job takes an equal amount of @ Jobs take different amount of time.
ime.
. . . @ Jobs arrive at different time.
@ All jobs arrive at the same time.
. . . @ We can preempt job.
@ A job will run to completion. Jobs d 10
@ The jobs only use the CPU (no I/0 ® Jobs do use |/0.
etc). @ Runt-time is not know.
@ .... What do we do?

@ The run-time of each job is known.

Can we design scheduling policies that give us good turn-around time and short
response time?
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Multi-level Feedback Queue (MLFQ)
Goals:
@ Good turnaround time - scheduled jobs so that jobs with short time to completion

are not delayed too much.
@ Improve responsiveness of interactive jobs - schedule interactive processes more

often.

Idea:
@ Multiple levels of priority - interactive jobs have higher priority.

o Each level uses round-robin to give processes an equal share.
@ Processes can be moved to a higher or lower level depending on their behavior.

How do we identify interactive processes and how do we make sure that they have high

priority?
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Rules of the game: MLFQ

Basic rules:

@ Rule 1: if Priority(A) > Priority(B) then A is scheduled for execution.
@ Rule 2: if Priority(A) = Priority(B) then A and B are scheduled in round-robin.
@ Rule 3: when a new job is created it starts with the highest priority.

Change priority (let’s try this)

@ Rule 4a: a job that has to be preempted (time-slice consumed) is moved to a
lower priority.

@ Rule 4b: a job that initiates a |/O-operation (or yields) remains on the same level.
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trick the scheduler

If the scheduler was constructed given the rules 1-5, how would you write your
program?

Rule 1: if Priority(A) > Priority(B) then A is scheduled for execution.
Rule 2: if Priority(A) = Priority(B) then A and B are scheduled in round-robin.

Rule 3: when a new job is created it starts with the highest priority.

Rule 4a: a job that has to be preempted (time-slice consumed) is moved to a
lower priority.

Rule 4b: a job that initiates a |/O-operation (or yields) remains on the same level.
@ Rule 5: after some time, move a job to the highest priority.
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let’s try this

A job is given a allotted time, to consume at each priority level.
@ Rule 4: a job that has consumed its allotted time is moved to a lower priority.

@ Rule 5: after some time, move all jobs to the highest priority.
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tune the scheduler

Setting the parameters:

How long is a time slice?
How many queues should there be?

How long time should a allotted time be in a specified queue?

How often should a job be boosted to the highest priority?
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What if:
@ we stop focusing on turnaround time and reaction and

@ start treating every job in a fair manner.

Give each job fair share.
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flexibility

@ A new job can be given a set of tickets as long as we keep track of how many
tickets we have.

o We can give a user a set of tickets and allow the user to distribute them among
its jobs.

@ Each user can have its local tickets and then have a local lottery.

@ We could allow each user to create new tickets, i.e. inflation, if we trust each
other.

How to implement?

32/46



Stand in line

@ Each job is given a number that
represents the number of tickets it
owns.

@ All jobs are lined up i a row.

@ Pick a random number from zero to
the total number of tickets.

@ Walk down the line and select the
winner.

How does this work?
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@ Each job is given a stride value, the higher the stride the lower the priority.
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A deterministic approach: stride scheduling

Each job is given a stride value, the higher the stride the lower the priority.
Each job keeps a pass value initially set to 0.

In each round the job with the lowest pass value is selected and ...

... the pass value is incremented by its stride value.

A low stride value will make it more likely to be scheduled soon again.

35/46
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Real-time systems

In real time scheduling we introduce a new requirement: things should be completed
within a given time period.

@ Hard : all deadlines should be met, missing a deadline is a failure.

@ Soft : deadlines could be missed but the application should be notified and be
able to take actions.

We often have real-time requirements that are simply met since we happen to have the
available resources.
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Real-time scheduling

In hard real-time systems, tasks are known aforehand and described by a triplet (e, d, p)
@ e: the worst case execution time for the task.
@ d: the deadline, when in the future do we need to finish.

@ p: the period, how often should the task be scheduled.

i . im :

0 d p p+d  2p 2p+d  3p 3p+d

d < p : constrained, d = p default, d > p several out-standing
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Strategies

Given that p = d i.e. a task must be completed within its period.

e Rate Monotonic Scheduling (RMS):
e Schedule the avilable task with the shortest period
o Always works if utilization is < 69% (actually less than n  (21/" — 1)), where n is
the number of processes) could work for higher loads.
e Simpler to reason about, easy to implement.
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With what accuracy can we determine worst case excution time?
Should we be conservative or take a chance?
Can we handle a dynamic set of tasks?

What happens when we have critical resources that are protected by locks?
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Multi-core architectures

Scheduling for a multi-core architecture more problematic (or rather more problematic
to achieve high utilization).

Why?
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Scheduling in Linux

How is scheduling managed in a Linux system?

@ O(n) scheduler: the original scheduler, did not scale well.

@ O(1) scheduler: multi-level feedback queues, dynamic priority, used up to version
2.6

e CFS: the completely fair scheduler, O(lg(n)), default today.

@ BF scheduler: no I will not tell you what it stands for.
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The Completely Fair Scheduler
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Metallica: Justice for all.

Leif “Loket” Olsson: a lottery might work ok

Real-time scheduling: if we actually know the maximum execution time, the
deadline and the period.

Multi-core schedulers: you have to think twice before selecting a process.

e Linux: Completely Fair Scheduler, schedules in O(lg(n)) time, similar to stride
scheduling.
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