
Scheduling

Johan Montelius

KTH

2021

1 / 46

process scheduling

Problem:

We have a set of processes: they all want to execute immediately and they do not
want to be interrupted.

Solution:

Let’s keep some waiting and let’s interrupt them.

Question:

What metrics are important?
Does it matter in what order we schedule processes?
Are there optimal solutions?

2 / 46

process scheduling

Problem:

We have a set of processes: they all want to execute immediately and they do not
want to be interrupted.

Solution:

Let’s keep some waiting and let’s interrupt them.

Question:

What metrics are important?
Does it matter in what order we schedule processes?
Are there optimal solutions?

2 / 46

process scheduling

Problem:

We have a set of processes: they all want to execute immediately and they do not
want to be interrupted.

Solution:

Let’s keep some waiting and let’s interrupt them.

Question:

What metrics are important?
Does it matter in what order we schedule processes?
Are there optimal solutions?

2 / 46

process scheduling

Problem:

We have a set of processes: they all want to execute immediately and they do not
want to be interrupted.

Solution:

Let’s keep some waiting and let’s interrupt them.

Question:

What metrics are important?
Does it matter in what order we schedule processes?
Are there optimal solutions?

2 / 46

process scheduling

Problem:

We have a set of processes: they all want to execute immediately and they do not
want to be interrupted.

Solution:

Let’s keep some waiting and let’s interrupt them.

Question:

What metrics are important?
Does it matter in what order we schedule processes?
Are there optimal solutions?

2 / 46

process scheduling

Problem:

We have a set of processes: they all want to execute immediately and they do not
want to be interrupted.

Solution:

Let’s keep some waiting and let’s interrupt them.

Question:

What metrics are important?
Does it matter in what order we schedule processes?
Are there optimal solutions?

2 / 46

process scheduling

Problem:

We have a set of processes: they all want to execute immediately and they do not
want to be interrupted.

Solution:

Let’s keep some waiting and let’s interrupt them.

Question:

What metrics are important?

Does it matter in what order we schedule processes?
Are there optimal solutions?

2 / 46

process scheduling

Problem:

We have a set of processes: they all want to execute immediately and they do not
want to be interrupted.

Solution:

Let’s keep some waiting and let’s interrupt them.

Question:

What metrics are important?
Does it matter in what order we schedule processes?

Are there optimal solutions?

2 / 46

process scheduling

Problem:

We have a set of processes: they all want to execute immediately and they do not
want to be interrupted.

Solution:

Let’s keep some waiting and let’s interrupt them.

Question:

What metrics are important?
Does it matter in what order we schedule processes?
Are there optimal solutions?

2 / 46

The unrealistic assumption ...

Assume we have a set of jobs.

Each job takes an equal amount of time.
All jobs arrive at the same time.
A job will run to completion.
The jobs only use the CPU (no I/0 etc).
The run-time of each job is known.

This is unrealistic - we will relax these requirements.

3 / 46

The unrealistic assumption ...

Assume we have a set of jobs.

Each job takes an equal amount of time.

All jobs arrive at the same time.
A job will run to completion.
The jobs only use the CPU (no I/0 etc).
The run-time of each job is known.

This is unrealistic - we will relax these requirements.

3 / 46

The unrealistic assumption ...

Assume we have a set of jobs.

Each job takes an equal amount of time.
All jobs arrive at the same time.

A job will run to completion.
The jobs only use the CPU (no I/0 etc).
The run-time of each job is known.

This is unrealistic - we will relax these requirements.

3 / 46

The unrealistic assumption ...

Assume we have a set of jobs.

Each job takes an equal amount of time.
All jobs arrive at the same time.
A job will run to completion.

The jobs only use the CPU (no I/0 etc).
The run-time of each job is known.

This is unrealistic - we will relax these requirements.

3 / 46

The unrealistic assumption ...

Assume we have a set of jobs.

Each job takes an equal amount of time.
All jobs arrive at the same time.
A job will run to completion.
The jobs only use the CPU (no I/0 etc).

The run-time of each job is known.

This is unrealistic - we will relax these requirements.

3 / 46

The unrealistic assumption ...

Assume we have a set of jobs.

Each job takes an equal amount of time.
All jobs arrive at the same time.
A job will run to completion.
The jobs only use the CPU (no I/0 etc).
The run-time of each job is known.

This is unrealistic - we will relax these requirements.

3 / 46

The unrealistic assumption ...

Assume we have a set of jobs.

Each job takes an equal amount of time.
All jobs arrive at the same time.
A job will run to completion.
The jobs only use the CPU (no I/0 etc).
The run-time of each job is known.

This is unrealistic - we will relax these requirements.

3 / 46

The unrealistic assumption ...

Assume we have a set of jobs.

Each job takes an equal amount of time.
All jobs arrive at the same time.
A job will run to completion.
The jobs only use the CPU (no I/0 etc).
The run-time of each job is known.

This is unrealistic - we will relax these requirements.

3 / 46

...every now and then I get a little bit lonely

4 / 46

...every now and then I get a little bit lonely

4 / 46

Performance metrics

Tturnaround = Tcompletion − Tarrival

How long time does it take to complete the job?

5 / 46

First Come First Serve (FCFS)

Assume we have three tasks, all arrive at time 0 and take 10 ms to execute.

0 10 20 30 40 50 60 ms

J1:

J2:

J3:

What is the average Tturnaround?

6 / 46

First Come First Serve (FCFS)
Assume we have three tasks, all arrive at time 0 and take 10 ms to execute.

0 10 20 30 40 50 60 ms

J1:

J2:

J3:

What is the average Tturnaround?

6 / 46

First Come First Serve (FCFS)
Assume we have three tasks, all arrive at time 0 and take 10 ms to execute.

0 10 20 30 40 50 60 ms

J1:

J2:

J3:

What is the average Tturnaround?

6 / 46

First Come First Serve (FCFS)
Assume we have three tasks, all arrive at time 0 and take 10 ms to execute.

0 10 20 30 40 50 60 ms

J1:

J2:

J3:

What is the average Tturnaround?

6 / 46

First Come First Serve (FCFS)
Assume we have three tasks, all arrive at time 0 and take 10 ms to execute.

0 10 20 30 40 50 60 ms

J1:

J2:

J3:

What is the average Tturnaround?
6 / 46

Not so good...

Assume one task takes 30 ms to execute.

0 10 20 30 40 50 60 ms

J1:

J2:

J3:

What is the average Tturnaround? Can we do better?

7 / 46

Not so good...

Assume one task takes 30 ms to execute.

0 10 20 30 40 50 60 ms

J1:

J2:

J3:

What is the average Tturnaround? Can we do better?

7 / 46

Not so good...

Assume one task takes 30 ms to execute.

0 10 20 30 40 50 60 ms

J1:

J2:

J3:

What is the average Tturnaround? Can we do better?

7 / 46

Not so good...

Assume one task takes 30 ms to execute.

0 10 20 30 40 50 60 ms

J1:

J2:

J3:

What is the average Tturnaround? Can we do better?

7 / 46

Not so good...

Assume one task takes 30 ms to execute.

0 10 20 30 40 50 60 ms

J1:

J2:

J3:

What is the average Tturnaround?

Can we do better?

7 / 46

Not so good...

Assume one task takes 30 ms to execute.

0 10 20 30 40 50 60 ms

J1:

J2:

J3:

What is the average Tturnaround? Can we do better?

7 / 46

Shortest Job First (SJF)

Always schedule the shortest job.

0 10 20 30 40 50 60 ms

J1:

J2:

J3:

What is the average Tturnaround? Problem solved!

8 / 46

Shortest Job First (SJF)
Always schedule the shortest job.

0 10 20 30 40 50 60 ms

J1:

J2:

J3:

What is the average Tturnaround? Problem solved!

8 / 46

Shortest Job First (SJF)
Always schedule the shortest job.

0 10 20 30 40 50 60 ms

J1:

J2:

J3:

What is the average Tturnaround? Problem solved!

8 / 46

Shortest Job First (SJF)
Always schedule the shortest job.

0 10 20 30 40 50 60 ms

J1:

J2:

J3:

What is the average Tturnaround? Problem solved!

8 / 46

Shortest Job First (SJF)
Always schedule the shortest job.

0 10 20 30 40 50 60 ms

J1:

J2:

J3:

What is the average Tturnaround?

Problem solved!

8 / 46

Shortest Job First (SJF)
Always schedule the shortest job.

0 10 20 30 40 50 60 ms

J1:

J2:

J3:

What is the average Tturnaround? Problem solved!
8 / 46

What if jobs arrive later?

Assume we have three tasks, one arrive at time 0 and takes 30 ms to execute. Two
arrive at time 10 and take 10 ms each.

We need to preempt the execution of a job.

9 / 46

What if jobs arrive later?

Assume we have three tasks, one arrive at time 0 and takes 30 ms to execute. Two
arrive at time 10 and take 10 ms each.

0 10 20 30 40 50 60 ms

J1:

J2:

J3:

We need to preempt the execution of a job.

9 / 46

What if jobs arrive later?

Assume we have three tasks, one arrive at time 0 and takes 30 ms to execute. Two
arrive at time 10 and take 10 ms each.

0 10 20 30 40 50 60 ms

J1:

J2:

J3:

We need to preempt the execution of a job.

9 / 46

What if jobs arrive later?

Assume we have three tasks, one arrive at time 0 and takes 30 ms to execute. Two
arrive at time 10 and take 10 ms each.

0 10 20 30 40 50 60 ms

J1:

J2:

J3:

We need to preempt the execution of a job.

9 / 46

What if jobs arrive later?

Assume we have three tasks, one arrive at time 0 and takes 30 ms to execute. Two
arrive at time 10 and take 10 ms each.

0 10 20 30 40 50 60 ms

J1:

J2:

J3:

We need to preempt the execution of a job.

9 / 46

What if jobs arrive later?

Assume we have three tasks, one arrive at time 0 and takes 30 ms to execute. Two
arrive at time 10 and take 10 ms each.

0 10 20 30 40 50 60 ms

J1:

J2:

J3:

We need to preempt the execution of a job.

9 / 46

Shortest Time-to-Completion First (STCF)

Let’s always schedule the task that has the shortest time left to completion.

0 10 20 30 40 50 60 ms

J1:

J2:

J3:

The policy is also known as Preemptive Shortest Job First (PSJF)

10 / 46

Shortest Time-to-Completion First (STCF)

Let’s always schedule the task that has the shortest time left to completion.

0 10 20 30 40 50 60 ms

J1:

J2:

J3:

The policy is also known as Preemptive Shortest Job First (PSJF)

10 / 46

Shortest Time-to-Completion First (STCF)

Let’s always schedule the task that has the shortest time left to completion.

0 10 20 30 40 50 60 ms

J1:

J2:

J3:

The policy is also known as Preemptive Shortest Job First (PSJF)

10 / 46

STCF - optimal policy

If we actually know the total execution time of each job as they arrive, then

Shortest Time-to-Completion First is an optimal policy.

The problem is that we do not know the total execution time aforehand.

There might be more important metrics than turnaround time.

11 / 46

STCF - optimal policy

If we actually know the total execution time of each job as they arrive, then

Shortest Time-to-Completion First is an optimal policy.

The problem is that we do not know the total execution time aforehand.

There might be more important metrics than turnaround time.

11 / 46

STCF - optimal policy

If we actually know the total execution time of each job as they arrive, then

Shortest Time-to-Completion First is an optimal policy.

The problem is that we do not know the total execution time aforehand.

There might be more important metrics than turnaround time.

11 / 46

STCF - optimal policy

If we actually know the total execution time of each job as they arrive, then

Shortest Time-to-Completion First is an optimal policy.

The problem is that we do not know the total execution time aforehand.

There might be more important metrics than turnaround time.

11 / 46

Talk about ...

12 / 46

Response time

In an interactive environment we might want to minimize response time.

Tresponse = Tfirst scheduled − Tarrival

The response might not be completed unless the job completes but it’s an ok metrics.

13 / 46

Response time

In an interactive environment we might want to minimize response time.

Tresponse = Tfirst scheduled − Tarrival

The response might not be completed unless the job completes but it’s an ok metrics.

13 / 46

Response time

In an interactive environment we might want to minimize response time.

Tresponse = Tfirst scheduled − Tarrival

The response might not be completed unless the job completes but it’s an ok metrics.

13 / 46

Try Shortest Job First

Assume we have three jobs that all arrive at time 0 and all take 40 ms to complete.

0 40 80 120 ms

J1:

J2:

J3:

What is the average response time?

14 / 46

Try Shortest Job First
Assume we have three jobs that all arrive at time 0 and all take 40 ms to complete.

0 40 80 120 ms

J1:

J2:

J3:

What is the average response time?

14 / 46

Try Shortest Job First
Assume we have three jobs that all arrive at time 0 and all take 40 ms to complete.

0 40 80 120 ms

J1:

J2:

J3:

What is the average response time?

14 / 46

Try Shortest Job First
Assume we have three jobs that all arrive at time 0 and all take 40 ms to complete.

0 40 80 120 ms

J1:

J2:

J3:

What is the average response time?

14 / 46

Try Shortest Job First
Assume we have three jobs that all arrive at time 0 and all take 40 ms to complete.

0 40 80 120 ms

J1:

J2:

J3:

What is the average response time?
14 / 46

Round-robin
Preempt a job in order to improve response time, give each job a time-slice of 10 ms.

0 40 80 120 ms

J1:

J2:

J3:

What is the average response time? What is the average turnaround time?

How to choose the time-slice?

15 / 46

Round-robin
Preempt a job in order to improve response time, give each job a time-slice of 10 ms.

0 40 80 120 ms

J1:

J2:

J3:

What is the average response time? What is the average turnaround time?

How to choose the time-slice?

15 / 46

Round-robin
Preempt a job in order to improve response time, give each job a time-slice of 10 ms.

0 40 80 120 ms

J1:

J2:

J3:

What is the average response time? What is the average turnaround time?

How to choose the time-slice?

15 / 46

Round-robin
Preempt a job in order to improve response time, give each job a time-slice of 10 ms.

0 40 80 120 ms

J1:

J2:

J3:

What is the average response time? What is the average turnaround time?

How to choose the time-slice?

15 / 46

Round-robin
Preempt a job in order to improve response time, give each job a time-slice of 10 ms.

0 40 80 120 ms

J1:

J2:

J3:

What is the average response time? What is the average turnaround time?

How to choose the time-slice?

15 / 46

Round-robin
Preempt a job in order to improve response time, give each job a time-slice of 10 ms.

0 40 80 120 ms

J1:

J2:

J3:

What is the average response time? What is the average turnaround time?

How to choose the time-slice?

15 / 46

Round-robin
Preempt a job in order to improve response time, give each job a time-slice of 10 ms.

0 40 80 120 ms

J1:

J2:

J3:

What is the average response time? What is the average turnaround time?

How to choose the time-slice?

15 / 46

Round-robin
Preempt a job in order to improve response time, give each job a time-slice of 10 ms.

0 40 80 120 ms

J1:

J2:

J3:

What is the average response time?

What is the average turnaround time?

How to choose the time-slice?

15 / 46

Round-robin
Preempt a job in order to improve response time, give each job a time-slice of 10 ms.

0 40 80 120 ms

J1:

J2:

J3:

What is the average response time? What is the average turnaround time?

How to choose the time-slice?

15 / 46

Round-robin
Preempt a job in order to improve response time, give each job a time-slice of 10 ms.

0 40 80 120 ms

J1:

J2:

J3:

What is the average response time? What is the average turnaround time?

How to choose the time-slice?
15 / 46

You can’t

16 / 46

processes do I/O

Assume we have two processes, each take 40 ms of CPU time but one will do
I/O-operations every 10 ms.

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

J1:

J2:

17 / 46

processes do I/O

Assume we have two processes, each take 40 ms of CPU time but one will do
I/O-operations every 10 ms.

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

J1:

J2:

17 / 46

processes do I/O

Assume we have two processes, each take 40 ms of CPU time but one will do
I/O-operations every 10 ms.

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

J1:

J2:

I/O

17 / 46

processes do I/O

Assume we have two processes, each take 40 ms of CPU time but one will do
I/O-operations every 10 ms.

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

J1:

J2:

I/O

17 / 46

processes do I/O

Assume we have two processes, each take 40 ms of CPU time but one will do
I/O-operations every 10 ms.

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

J1:

J2:

I/O I/O

17 / 46

processes do I/O

Assume we have two processes, each take 40 ms of CPU time but one will do
I/O-operations every 10 ms.

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

J1:

J2:

I/O I/O

17 / 46

processes do I/O

Assume we have two processes, each take 40 ms of CPU time but one will do
I/O-operations every 10 ms.

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

J1:

J2:

I/O I/O I/O

17 / 46

processes do I/O

Assume we have two processes, each take 40 ms of CPU time but one will do
I/O-operations every 10 ms.

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

J1:

J2:

I/O I/O I/O

17 / 46

processes do I/O

Assume we have two processes, each take 40 ms of CPU time but one will do
I/O-operations every 10 ms.

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

J1:

J2:

I/O I/O I/O

17 / 46

deschedule when initiate I/O

An I/O-operation will take time to complete and we (the CPU) could do some useful
work while a process is waiting.

readystart running

blocked

exit

scheduled

timeout

exit

I/O initiateI/O completed

A process is descheduled if it is preempted or if it initiates a I/O-operation.

18 / 46

deschedule when initiate I/O

An I/O-operation will take time to complete and we (the CPU) could do some useful
work while a process is waiting.

readystart running

blocked

exit

scheduled

timeout

exit

I/O initiateI/O completed

A process is descheduled if it is preempted or if it initiates a I/O-operation.

18 / 46

deschedule when initiate I/O

An I/O-operation will take time to complete and we (the CPU) could do some useful
work while a process is waiting.

readystart running

blocked

exit

scheduled

timeout

exit

I/O initiateI/O completed

A process is descheduled if it is preempted or if it initiates a I/O-operation.

18 / 46

much better

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

J1:

J2:

19 / 46

much better

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

J1:

J2:

19 / 46

much better

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

J1:

J2:

I/O

19 / 46

much better

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

J1:

J2:

I/O

19 / 46

much better

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

J1:

J2:

I/O I/O

19 / 46

much better

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

J1:

J2:

I/O I/O

19 / 46

much better

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

J1:

J2:

I/O I/O I/O

19 / 46

much better

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

J1:

J2:

I/O I/O I/O

19 / 46

much better

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

J1:

J2:

I/O I/O I/O

19 / 46

the challenge

Ideal world:

Each job takes an equal amount of
time.

All jobs arrive at the same time.
A job will run to completion.
The jobs only use the CPU (no I/0
etc).
The run-time of each job is known.

Real world:

Jobs take different amount of time.
Jobs arrive at different time.
We can preempt job.
Jobs do use I/O.
Runt-time is not know.
.... What do we do?

Can we design scheduling policies that give us good turn-around time and short
response time?

20 / 46

the challenge

Ideal world:

Each job takes an equal amount of
time.
All jobs arrive at the same time.

A job will run to completion.
The jobs only use the CPU (no I/0
etc).
The run-time of each job is known.

Real world:

Jobs take different amount of time.
Jobs arrive at different time.
We can preempt job.
Jobs do use I/O.
Runt-time is not know.
.... What do we do?

Can we design scheduling policies that give us good turn-around time and short
response time?

20 / 46

the challenge

Ideal world:

Each job takes an equal amount of
time.
All jobs arrive at the same time.
A job will run to completion.

The jobs only use the CPU (no I/0
etc).
The run-time of each job is known.

Real world:

Jobs take different amount of time.
Jobs arrive at different time.
We can preempt job.
Jobs do use I/O.
Runt-time is not know.
.... What do we do?

Can we design scheduling policies that give us good turn-around time and short
response time?

20 / 46

the challenge

Ideal world:

Each job takes an equal amount of
time.
All jobs arrive at the same time.
A job will run to completion.
The jobs only use the CPU (no I/0
etc).

The run-time of each job is known.

Real world:

Jobs take different amount of time.
Jobs arrive at different time.
We can preempt job.
Jobs do use I/O.
Runt-time is not know.
.... What do we do?

Can we design scheduling policies that give us good turn-around time and short
response time?

20 / 46

the challenge

Ideal world:

Each job takes an equal amount of
time.
All jobs arrive at the same time.
A job will run to completion.
The jobs only use the CPU (no I/0
etc).
The run-time of each job is known.

Real world:

Jobs take different amount of time.
Jobs arrive at different time.
We can preempt job.
Jobs do use I/O.
Runt-time is not know.
.... What do we do?

Can we design scheduling policies that give us good turn-around time and short
response time?

20 / 46

the challenge

Ideal world:

Each job takes an equal amount of
time.
All jobs arrive at the same time.
A job will run to completion.
The jobs only use the CPU (no I/0
etc).
The run-time of each job is known.

Real world:

Jobs take different amount of time.
Jobs arrive at different time.
We can preempt job.
Jobs do use I/O.
Runt-time is not know.
.... What do we do?

Can we design scheduling policies that give us good turn-around time and short
response time?

20 / 46

the challenge

Ideal world:

Each job takes an equal amount of
time.
All jobs arrive at the same time.
A job will run to completion.
The jobs only use the CPU (no I/0
etc).
The run-time of each job is known.

Real world:

Jobs take different amount of time.
Jobs arrive at different time.
We can preempt job.
Jobs do use I/O.
Runt-time is not know.
.... What do we do?

Can we design scheduling policies that give us good turn-around time and short
response time?

20 / 46

the challenge

Ideal world:

Each job takes an equal amount of
time.
All jobs arrive at the same time.
A job will run to completion.
The jobs only use the CPU (no I/0
etc).
The run-time of each job is known.

Real world:

Jobs take different amount of time.

Jobs arrive at different time.
We can preempt job.
Jobs do use I/O.
Runt-time is not know.
.... What do we do?

Can we design scheduling policies that give us good turn-around time and short
response time?

20 / 46

the challenge

Ideal world:

Each job takes an equal amount of
time.
All jobs arrive at the same time.
A job will run to completion.
The jobs only use the CPU (no I/0
etc).
The run-time of each job is known.

Real world:

Jobs take different amount of time.
Jobs arrive at different time.

We can preempt job.
Jobs do use I/O.
Runt-time is not know.
.... What do we do?

Can we design scheduling policies that give us good turn-around time and short
response time?

20 / 46

the challenge

Ideal world:

Each job takes an equal amount of
time.
All jobs arrive at the same time.
A job will run to completion.
The jobs only use the CPU (no I/0
etc).
The run-time of each job is known.

Real world:

Jobs take different amount of time.
Jobs arrive at different time.
We can preempt job.

Jobs do use I/O.
Runt-time is not know.
.... What do we do?

Can we design scheduling policies that give us good turn-around time and short
response time?

20 / 46

the challenge

Ideal world:

Each job takes an equal amount of
time.
All jobs arrive at the same time.
A job will run to completion.
The jobs only use the CPU (no I/0
etc).
The run-time of each job is known.

Real world:

Jobs take different amount of time.
Jobs arrive at different time.
We can preempt job.
Jobs do use I/O.

Runt-time is not know.
.... What do we do?

Can we design scheduling policies that give us good turn-around time and short
response time?

20 / 46

the challenge

Ideal world:

Each job takes an equal amount of
time.
All jobs arrive at the same time.
A job will run to completion.
The jobs only use the CPU (no I/0
etc).
The run-time of each job is known.

Real world:

Jobs take different amount of time.
Jobs arrive at different time.
We can preempt job.
Jobs do use I/O.
Runt-time is not know.

.... What do we do?

Can we design scheduling policies that give us good turn-around time and short
response time?

20 / 46

the challenge

Ideal world:

Each job takes an equal amount of
time.
All jobs arrive at the same time.
A job will run to completion.
The jobs only use the CPU (no I/0
etc).
The run-time of each job is known.

Real world:

Jobs take different amount of time.
Jobs arrive at different time.
We can preempt job.
Jobs do use I/O.
Runt-time is not know.
.... What do we do?

Can we design scheduling policies that give us good turn-around time and short
response time?

20 / 46

the challenge

Ideal world:

Each job takes an equal amount of
time.
All jobs arrive at the same time.
A job will run to completion.
The jobs only use the CPU (no I/0
etc).
The run-time of each job is known.

Real world:

Jobs take different amount of time.
Jobs arrive at different time.
We can preempt job.
Jobs do use I/O.
Runt-time is not know.
.... What do we do?

Can we design scheduling policies that give us good turn-around time and short
response time?

20 / 46

Multi-level Feedback Queue (MLFQ)
Goals:

Good turnaround time - scheduled jobs so that jobs with short time to completion
are not delayed too much.
Improve responsiveness of interactive jobs - schedule interactive processes more
often.

Idea:
Multiple levels of priority - interactive jobs have higher priority.
Each level uses round-robin to give processes an equal share.
Processes can be moved to a higher or lower level depending on their behavior.

How do we identify interactive processes and how do we make sure that they have high
priority?

21 / 46

Multi-level Feedback Queue (MLFQ)
Goals:

Good turnaround time - scheduled jobs so that jobs with short time to completion
are not delayed too much.

Improve responsiveness of interactive jobs - schedule interactive processes more
often.

Idea:
Multiple levels of priority - interactive jobs have higher priority.
Each level uses round-robin to give processes an equal share.
Processes can be moved to a higher or lower level depending on their behavior.

How do we identify interactive processes and how do we make sure that they have high
priority?

21 / 46

Multi-level Feedback Queue (MLFQ)
Goals:

Good turnaround time - scheduled jobs so that jobs with short time to completion
are not delayed too much.
Improve responsiveness of interactive jobs - schedule interactive processes more
often.

Idea:

Multiple levels of priority - interactive jobs have higher priority.
Each level uses round-robin to give processes an equal share.
Processes can be moved to a higher or lower level depending on their behavior.

How do we identify interactive processes and how do we make sure that they have high
priority?

21 / 46

Multi-level Feedback Queue (MLFQ)
Goals:

Good turnaround time - scheduled jobs so that jobs with short time to completion
are not delayed too much.
Improve responsiveness of interactive jobs - schedule interactive processes more
often.

Idea:
Multiple levels of priority - interactive jobs have higher priority.

Each level uses round-robin to give processes an equal share.
Processes can be moved to a higher or lower level depending on their behavior.

How do we identify interactive processes and how do we make sure that they have high
priority?

21 / 46

Multi-level Feedback Queue (MLFQ)
Goals:

Good turnaround time - scheduled jobs so that jobs with short time to completion
are not delayed too much.
Improve responsiveness of interactive jobs - schedule interactive processes more
often.

Idea:
Multiple levels of priority - interactive jobs have higher priority.
Each level uses round-robin to give processes an equal share.

Processes can be moved to a higher or lower level depending on their behavior.

How do we identify interactive processes and how do we make sure that they have high
priority?

21 / 46

Multi-level Feedback Queue (MLFQ)
Goals:

Good turnaround time - scheduled jobs so that jobs with short time to completion
are not delayed too much.
Improve responsiveness of interactive jobs - schedule interactive processes more
often.

Idea:
Multiple levels of priority - interactive jobs have higher priority.
Each level uses round-robin to give processes an equal share.
Processes can be moved to a higher or lower level depending on their behavior.

How do we identify interactive processes and how do we make sure that they have high
priority?

21 / 46

Multi-level Feedback Queue (MLFQ)
Goals:

Good turnaround time - scheduled jobs so that jobs with short time to completion
are not delayed too much.
Improve responsiveness of interactive jobs - schedule interactive processes more
often.

Idea:
Multiple levels of priority - interactive jobs have higher priority.
Each level uses round-robin to give processes an equal share.
Processes can be moved to a higher or lower level depending on their behavior.

How do we identify interactive processes and how do we make sure that they have high
priority?

21 / 46

Rules of the game: MLFQ

Basic rules:

Rule 1: if Priority(A) > Priority(B) then A is scheduled for execution.
Rule 2: if Priority(A) = Priority(B) then A and B are scheduled in round-robin.
Rule 3: when a new job is created it starts with the highest priority.

Change priority (let’s try this)

Rule 4a: a job that has to be preempted (time-slice consumed) is moved to a
lower priority.
Rule 4b: a job that initiates a I/O-operation (or yields) remains on the same level.

22 / 46

Rules of the game: MLFQ

Basic rules:

Rule 1: if Priority(A) > Priority(B) then A is scheduled for execution.

Rule 2: if Priority(A) = Priority(B) then A and B are scheduled in round-robin.
Rule 3: when a new job is created it starts with the highest priority.

Change priority (let’s try this)

Rule 4a: a job that has to be preempted (time-slice consumed) is moved to a
lower priority.
Rule 4b: a job that initiates a I/O-operation (or yields) remains on the same level.

22 / 46

Rules of the game: MLFQ

Basic rules:

Rule 1: if Priority(A) > Priority(B) then A is scheduled for execution.
Rule 2: if Priority(A) = Priority(B) then A and B are scheduled in round-robin.

Rule 3: when a new job is created it starts with the highest priority.

Change priority (let’s try this)

Rule 4a: a job that has to be preempted (time-slice consumed) is moved to a
lower priority.
Rule 4b: a job that initiates a I/O-operation (or yields) remains on the same level.

22 / 46

Rules of the game: MLFQ

Basic rules:

Rule 1: if Priority(A) > Priority(B) then A is scheduled for execution.
Rule 2: if Priority(A) = Priority(B) then A and B are scheduled in round-robin.
Rule 3: when a new job is created it starts with the highest priority.

Change priority (let’s try this)

Rule 4a: a job that has to be preempted (time-slice consumed) is moved to a
lower priority.
Rule 4b: a job that initiates a I/O-operation (or yields) remains on the same level.

22 / 46

Rules of the game: MLFQ

Basic rules:

Rule 1: if Priority(A) > Priority(B) then A is scheduled for execution.
Rule 2: if Priority(A) = Priority(B) then A and B are scheduled in round-robin.
Rule 3: when a new job is created it starts with the highest priority.

Change priority (let’s try this)

Rule 4a: a job that has to be preempted (time-slice consumed) is moved to a
lower priority.
Rule 4b: a job that initiates a I/O-operation (or yields) remains on the same level.

22 / 46

Rules of the game: MLFQ

Basic rules:

Rule 1: if Priority(A) > Priority(B) then A is scheduled for execution.
Rule 2: if Priority(A) = Priority(B) then A and B are scheduled in round-robin.
Rule 3: when a new job is created it starts with the highest priority.

Change priority (let’s try this)

Rule 4a: a job that has to be preempted (time-slice consumed) is moved to a
lower priority.

Rule 4b: a job that initiates a I/O-operation (or yields) remains on the same level.

22 / 46

Rules of the game: MLFQ

Basic rules:

Rule 1: if Priority(A) > Priority(B) then A is scheduled for execution.
Rule 2: if Priority(A) = Priority(B) then A and B are scheduled in round-robin.
Rule 3: when a new job is created it starts with the highest priority.

Change priority (let’s try this)

Rule 4a: a job that has to be preempted (time-slice consumed) is moved to a
lower priority.
Rule 4b: a job that initiates a I/O-operation (or yields) remains on the same level.

22 / 46

fine, no problem ...

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

23 / 46

fine, no problem ...

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

23 / 46

fine, no problem ...

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

23 / 46

fine, no problem ...

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

23 / 46

fine, no problem ...

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

23 / 46

fine, no problem ...

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

23 / 46

fine, no problem ...

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

23 / 46

fine, no problem ...

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

I/O

23 / 46

fine, no problem ...

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

I/O

23 / 46

fine, no problem ...

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

I/O

23 / 46

fine, no problem ...

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

I/O I/O

23 / 46

fine, no problem ...

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

I/O I/O

23 / 46

fine, no problem ...

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

I/O I/O

23 / 46

fine, no problem ...

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

I/O I/O

I/O

23 / 46

fine, no problem ...

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

I/O I/O

I/O

23 / 46

fine, no problem ...

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

I/O I/O

I/O

I/O

23 / 46

fine, no problem ...

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

I/O I/O

I/O

I/O

23 / 46

fine, no problem ...

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

I/O I/O

I/O

I/O

I/O

23 / 46

fine, no problem ...

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

I/O I/O

I/O

I/O

I/O

23 / 46

boost a job

Rule 5: after some time, move a job to the highest priority.

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

24 / 46

boost a job

Rule 5: after some time, move a job to the highest priority.

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

24 / 46

boost a job

Rule 5: after some time, move a job to the highest priority.

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

24 / 46

boost a job

Rule 5: after some time, move a job to the highest priority.

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

24 / 46

boost a job

Rule 5: after some time, move a job to the highest priority.

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

24 / 46

boost a job

Rule 5: after some time, move a job to the highest priority.

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

24 / 46

boost a job

Rule 5: after some time, move a job to the highest priority.

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

24 / 46

boost a job

Rule 5: after some time, move a job to the highest priority.

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

I/O

24 / 46

boost a job

Rule 5: after some time, move a job to the highest priority.

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

I/O

24 / 46

boost a job

Rule 5: after some time, move a job to the highest priority.

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

I/O

24 / 46

boost a job

Rule 5: after some time, move a job to the highest priority.

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

I/O I/O

24 / 46

boost a job

Rule 5: after some time, move a job to the highest priority.

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

I/O I/O

24 / 46

boost a job

Rule 5: after some time, move a job to the highest priority.

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

I/O I/O

24 / 46

boost a job

Rule 5: after some time, move a job to the highest priority.

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

I/O I/O

I/O

24 / 46

boost a job

Rule 5: after some time, move a job to the highest priority.

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

I/O I/O

I/O

24 / 46

boost a job

Rule 5: after some time, move a job to the highest priority.

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

I/O I/O

I/O

I/O

24 / 46

boost a job

Rule 5: after some time, move a job to the highest priority.

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

I/O I/O

I/O

I/O

boosted

24 / 46

boost a job

Rule 5: after some time, move a job to the highest priority.

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

I/O I/O

I/O

I/O

boosted

24 / 46

boost a job

Rule 5: after some time, move a job to the highest priority.

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

I/O I/O

I/O

I/O

boosted

I/O

24 / 46

boost a job

Rule 5: after some time, move a job to the highest priority.

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Q2:

Q1:

Q0:

I/O I/O

I/O

I/O

boosted

I/O

24 / 46

trick the scheduler

If the scheduler was constructed given the rules 1-5, how would you write your
program?

Rule 1: if Priority(A) > Priority(B) then A is scheduled for execution.
Rule 2: if Priority(A) = Priority(B) then A and B are scheduled in round-robin.
Rule 3: when a new job is created it starts with the highest priority.
Rule 4a: a job that has to be preempted (time-slice consumed) is moved to a
lower priority.
Rule 4b: a job that initiates a I/O-operation (or yields) remains on the same level.
Rule 5: after some time, move a job to the highest priority.

25 / 46

trick the scheduler

If the scheduler was constructed given the rules 1-5, how would you write your
program?

Rule 1: if Priority(A) > Priority(B) then A is scheduled for execution.

Rule 2: if Priority(A) = Priority(B) then A and B are scheduled in round-robin.
Rule 3: when a new job is created it starts with the highest priority.
Rule 4a: a job that has to be preempted (time-slice consumed) is moved to a
lower priority.
Rule 4b: a job that initiates a I/O-operation (or yields) remains on the same level.
Rule 5: after some time, move a job to the highest priority.

25 / 46

trick the scheduler

If the scheduler was constructed given the rules 1-5, how would you write your
program?

Rule 1: if Priority(A) > Priority(B) then A is scheduled for execution.
Rule 2: if Priority(A) = Priority(B) then A and B are scheduled in round-robin.

Rule 3: when a new job is created it starts with the highest priority.
Rule 4a: a job that has to be preempted (time-slice consumed) is moved to a
lower priority.
Rule 4b: a job that initiates a I/O-operation (or yields) remains on the same level.
Rule 5: after some time, move a job to the highest priority.

25 / 46

trick the scheduler

If the scheduler was constructed given the rules 1-5, how would you write your
program?

Rule 1: if Priority(A) > Priority(B) then A is scheduled for execution.
Rule 2: if Priority(A) = Priority(B) then A and B are scheduled in round-robin.
Rule 3: when a new job is created it starts with the highest priority.

Rule 4a: a job that has to be preempted (time-slice consumed) is moved to a
lower priority.
Rule 4b: a job that initiates a I/O-operation (or yields) remains on the same level.
Rule 5: after some time, move a job to the highest priority.

25 / 46

trick the scheduler

If the scheduler was constructed given the rules 1-5, how would you write your
program?

Rule 1: if Priority(A) > Priority(B) then A is scheduled for execution.
Rule 2: if Priority(A) = Priority(B) then A and B are scheduled in round-robin.
Rule 3: when a new job is created it starts with the highest priority.
Rule 4a: a job that has to be preempted (time-slice consumed) is moved to a
lower priority.

Rule 4b: a job that initiates a I/O-operation (or yields) remains on the same level.
Rule 5: after some time, move a job to the highest priority.

25 / 46

trick the scheduler

If the scheduler was constructed given the rules 1-5, how would you write your
program?

Rule 1: if Priority(A) > Priority(B) then A is scheduled for execution.
Rule 2: if Priority(A) = Priority(B) then A and B are scheduled in round-robin.
Rule 3: when a new job is created it starts with the highest priority.
Rule 4a: a job that has to be preempted (time-slice consumed) is moved to a
lower priority.
Rule 4b: a job that initiates a I/O-operation (or yields) remains on the same level.
Rule 5: after some time, move a job to the highest priority.

25 / 46

let’s try this

A job is given a allotted time, to consume at each priority level.

Rule 4: a job that has consumed its allotted time is moved to a lower priority.
Rule 5: after some time, move all jobs to the highest priority.

26 / 46

let’s try this

A job is given a allotted time, to consume at each priority level.
Rule 4: a job that has consumed its allotted time is moved to a lower priority.

Rule 5: after some time, move all jobs to the highest priority.

26 / 46

let’s try this

A job is given a allotted time, to consume at each priority level.
Rule 4: a job that has consumed its allotted time is moved to a lower priority.
Rule 5: after some time, move all jobs to the highest priority.

26 / 46

tune the scheduler

Setting the parameters:

How long is a time slice?
How many queues should there be?
How long time should a allotted time be in a specified queue?
How often should a job be boosted to the highest priority?

27 / 46

tune the scheduler

Setting the parameters:

How long is a time slice?
How many queues should there be?
How long time should a allotted time be in a specified queue?
How often should a job be boosted to the highest priority?

27 / 46

Change the perspective

What if:

we stop focusing on turnaround time and reaction and
start treating every job in a fair manner.

Give each job fair share.

28 / 46

Change the perspective

What if:
we stop focusing on turnaround time and reaction and

start treating every job in a fair manner.

Give each job fair share.

28 / 46

Change the perspective

What if:
we stop focusing on turnaround time and reaction and
start treating every job in a fair manner.

Give each job fair share.

28 / 46

Change the perspective

What if:
we stop focusing on turnaround time and reaction and
start treating every job in a fair manner.

Give each job fair share.

28 / 46

Justice for all

29 / 46

Proportional share

Let’s have a lottery:

30 / 46

Proportional share

Let’s have a lottery:

30 / 46

and the winner is

We divide the tickets among the jobs: A - 35 tickets, B - 15 tickets and C - 50 tickets.

The scheduler selects a winning ticket by random.

And the winner is: 23, 56, 13, 73, 8, 82, 17, 34,

31 / 46

and the winner is

We divide the tickets among the jobs: A - 35 tickets, B - 15 tickets and C - 50 tickets.

The scheduler selects a winning ticket by random.

And the winner is: 23, 56, 13, 73, 8, 82, 17, 34,

31 / 46

and the winner is

We divide the tickets among the jobs: A - 35 tickets, B - 15 tickets and C - 50 tickets.

The scheduler selects a winning ticket by random.

And the winner is: 23, 56, 13, 73, 8, 82, 17, 34,

31 / 46

and the winner is

We divide the tickets among the jobs: A - 35 tickets, B - 15 tickets and C - 50 tickets.

The scheduler selects a winning ticket by random.

And the winner is: 23, 56, 13, 73, 8, 82, 17, 34,

31 / 46

flexibility

A new job can be given a set of tickets as long as we keep track of how many
tickets we have.

We can give a user a set of tickets and allow the user to distribute them among
its jobs.
Each user can have its local tickets and then have a local lottery.
We could allow each user to create new tickets, i.e. inflation, if we trust each
other.

How to implement?

32 / 46

flexibility

A new job can be given a set of tickets as long as we keep track of how many
tickets we have.
We can give a user a set of tickets and allow the user to distribute them among
its jobs.

Each user can have its local tickets and then have a local lottery.
We could allow each user to create new tickets, i.e. inflation, if we trust each
other.

How to implement?

32 / 46

flexibility

A new job can be given a set of tickets as long as we keep track of how many
tickets we have.
We can give a user a set of tickets and allow the user to distribute them among
its jobs.
Each user can have its local tickets and then have a local lottery.

We could allow each user to create new tickets, i.e. inflation, if we trust each
other.

How to implement?

32 / 46

flexibility

A new job can be given a set of tickets as long as we keep track of how many
tickets we have.
We can give a user a set of tickets and allow the user to distribute them among
its jobs.
Each user can have its local tickets and then have a local lottery.
We could allow each user to create new tickets, i.e. inflation, if we trust each
other.

How to implement?

32 / 46

Stand in line

Each job is given a number that
represents the number of tickets it
owns.
All jobs are lined up i a row.
Pick a random number from zero to
the total number of tickets.
Walk down the line and select the
winner.

How does this work?

33 / 46

Why random?

34 / 46

A deterministic approach: stride scheduling

Each job is given a stride value, the higher the stride the lower the priority.

Each job keeps a pass value initially set to 0.
In each round the job with the lowest pass value is selected and ...
... the pass value is incremented by its stride value.

A low stride value will make it more likely to be scheduled soon again.

35 / 46

A deterministic approach: stride scheduling

Each job is given a stride value, the higher the stride the lower the priority.
Each job keeps a pass value initially set to 0.

In each round the job with the lowest pass value is selected and ...
... the pass value is incremented by its stride value.

A low stride value will make it more likely to be scheduled soon again.

35 / 46

A deterministic approach: stride scheduling

Each job is given a stride value, the higher the stride the lower the priority.
Each job keeps a pass value initially set to 0.
In each round the job with the lowest pass value is selected and ...

... the pass value is incremented by its stride value.

A low stride value will make it more likely to be scheduled soon again.

35 / 46

A deterministic approach: stride scheduling

Each job is given a stride value, the higher the stride the lower the priority.
Each job keeps a pass value initially set to 0.
In each round the job with the lowest pass value is selected and ...
... the pass value is incremented by its stride value.

A low stride value will make it more likely to be scheduled soon again.

35 / 46

A deterministic approach: stride scheduling

Each job is given a stride value, the higher the stride the lower the priority.
Each job keeps a pass value initially set to 0.
In each round the job with the lowest pass value is selected and ...
... the pass value is incremented by its stride value.

A low stride value will make it more likely to be scheduled soon again.

35 / 46

Real-time systems

In real time scheduling we introduce a new requirement: things should be completed
within a given time period.

Hard : all deadlines should be met, missing a deadline is a failure.
Soft : deadlines could be missed but the application should be notified and be
able to take actions.

We often have real-time requirements that are simply met since we happen to have the
available resources.

36 / 46

Real-time systems

In real time scheduling we introduce a new requirement: things should be completed
within a given time period.

Hard : all deadlines should be met, missing a deadline is a failure.
Soft : deadlines could be missed but the application should be notified and be
able to take actions.

We often have real-time requirements that are simply met since we happen to have the
available resources.

36 / 46

Real-time systems

In real time scheduling we introduce a new requirement: things should be completed
within a given time period.

Hard : all deadlines should be met, missing a deadline is a failure.

Soft : deadlines could be missed but the application should be notified and be
able to take actions.

We often have real-time requirements that are simply met since we happen to have the
available resources.

36 / 46

Real-time systems

In real time scheduling we introduce a new requirement: things should be completed
within a given time period.

Hard : all deadlines should be met, missing a deadline is a failure.
Soft : deadlines could be missed but the application should be notified and be
able to take actions.

We often have real-time requirements that are simply met since we happen to have the
available resources.

36 / 46

Real-time systems

In real time scheduling we introduce a new requirement: things should be completed
within a given time period.

Hard : all deadlines should be met, missing a deadline is a failure.
Soft : deadlines could be missed but the application should be notified and be
able to take actions.

We often have real-time requirements that are simply met since we happen to have the
available resources.

36 / 46

Real-time scheduling

In hard real-time systems, tasks are known aforehand and described by a triplet 〈e, d , p〉
e: the worst case execution time for the task.
d: the deadline, when in the future do we need to finish.
p: the period, how often should the task be scheduled.

d < p : constrained, d = p default, d > p several out-standing

37 / 46

Real-time scheduling

In hard real-time systems, tasks are known aforehand and described by a triplet 〈e, d , p〉

e: the worst case execution time for the task.
d: the deadline, when in the future do we need to finish.
p: the period, how often should the task be scheduled.

d < p : constrained, d = p default, d > p several out-standing

37 / 46

Real-time scheduling

In hard real-time systems, tasks are known aforehand and described by a triplet 〈e, d , p〉
e: the worst case execution time for the task.

d: the deadline, when in the future do we need to finish.
p: the period, how often should the task be scheduled.

d < p : constrained, d = p default, d > p several out-standing

37 / 46

Real-time scheduling

In hard real-time systems, tasks are known aforehand and described by a triplet 〈e, d , p〉
e: the worst case execution time for the task.
d: the deadline, when in the future do we need to finish.

p: the period, how often should the task be scheduled.

d < p : constrained, d = p default, d > p several out-standing

37 / 46

Real-time scheduling

In hard real-time systems, tasks are known aforehand and described by a triplet 〈e, d , p〉
e: the worst case execution time for the task.
d: the deadline, when in the future do we need to finish.
p: the period, how often should the task be scheduled.

d < p : constrained, d = p default, d > p several out-standing

37 / 46

Real-time scheduling

In hard real-time systems, tasks are known aforehand and described by a triplet 〈e, d , p〉
e: the worst case execution time for the task.
d: the deadline, when in the future do we need to finish.
p: the period, how often should the task be scheduled.

0 p 2p 3p

d < p : constrained, d = p default, d > p several out-standing

37 / 46

Real-time scheduling

In hard real-time systems, tasks are known aforehand and described by a triplet 〈e, d , p〉
e: the worst case execution time for the task.
d: the deadline, when in the future do we need to finish.
p: the period, how often should the task be scheduled.

0 p 2p 3pd

d < p : constrained, d = p default, d > p several out-standing

37 / 46

Real-time scheduling

In hard real-time systems, tasks are known aforehand and described by a triplet 〈e, d , p〉
e: the worst case execution time for the task.
d: the deadline, when in the future do we need to finish.
p: the period, how often should the task be scheduled.

0 p 2p 3pd p+d 2p+d 3p+d

d < p : constrained, d = p default, d > p several out-standing

37 / 46

Real-time scheduling

In hard real-time systems, tasks are known aforehand and described by a triplet 〈e, d , p〉
e: the worst case execution time for the task.
d: the deadline, when in the future do we need to finish.
p: the period, how often should the task be scheduled.

0 p 2p 3pd p+d 2p+d 3p+d

e

d < p : constrained, d = p default, d > p several out-standing

37 / 46

Real-time scheduling

In hard real-time systems, tasks are known aforehand and described by a triplet 〈e, d , p〉
e: the worst case execution time for the task.
d: the deadline, when in the future do we need to finish.
p: the period, how often should the task be scheduled.

0 p 2p 3pd p+d 2p+d 3p+d

e

d < p : constrained, d = p default, d > p several out-standing

37 / 46

Real-time scheduling

In hard real-time systems, tasks are known aforehand and described by a triplet 〈e, d , p〉
e: the worst case execution time for the task.
d: the deadline, when in the future do we need to finish.
p: the period, how often should the task be scheduled.

0 p 2p 3pd p+d 2p+d 3p+d

e

d < p : constrained, d = p default, d > p several out-standing

37 / 46

Real-time Scheduling

Given a set of tasks: T1: 〈10, 30, 40〉, T2: 〈20, 60, 100〉, T3: 〈60, 200, 200〉: , find the
scheduling.

38 / 46

Real-time Scheduling

Given a set of tasks: T1: 〈10, 30, 40〉, T2: 〈20, 60, 100〉, T3: 〈60, 200, 200〉: , find the
scheduling.

0 20 40 60 80 100 120 140 160 180 200

T1:
T2:
T3:

38 / 46

Real-time Scheduling

Given a set of tasks: T1: 〈10, 30, 40〉, T2: 〈20, 60, 100〉, T3: 〈60, 200, 200〉: , find the
scheduling.

0 20 40 60 80 100 120 140 160 180 200

T1:
T2:
T3:

38 / 46

Real-time Scheduling

Given a set of tasks: T1: 〈10, 30, 40〉, T2: 〈20, 60, 100〉, T3: 〈60, 200, 200〉: , find the
scheduling.

0 20 40 60 80 100 120 140 160 180 200

T1:
T2:
T3:

38 / 46

Real-time Scheduling

Given a set of tasks: T1: 〈10, 30, 40〉, T2: 〈20, 60, 100〉, T3: 〈60, 200, 200〉: , find the
scheduling.

0 20 40 60 80 100 120 140 160 180 200

T1:
T2:
T3:

38 / 46

Real-time Scheduling

Given a set of tasks: T1: 〈10, 30, 40〉, T2: 〈20, 60, 100〉, T3: 〈60, 200, 200〉: , find the
scheduling.

0 20 40 60 80 100 120 140 160 180 200

T1:
T2:
T3:

38 / 46

Real-time Scheduling

Given a set of tasks: T1: 〈10, 30, 40〉, T2: 〈20, 60, 100〉, T3: 〈60, 200, 200〉: , find the
scheduling.

0 20 40 60 80 100 120 140 160 180 200

T1:
T2:
T3:

38 / 46

Real-time Scheduling

Given a set of tasks: T1: 〈10, 30, 40〉, T2: 〈20, 60, 100〉, T3: 〈60, 200, 200〉: , find the
scheduling.

0 20 40 60 80 100 120 140 160 180 200

T1:
T2:
T3:

38 / 46

Real-time Scheduling

Given a set of tasks: T1: 〈10, 30, 40〉, T2: 〈20, 60, 100〉, T3: 〈60, 200, 200〉: , find the
scheduling.

0 20 40 60 80 100 120 140 160 180 200

T1:
T2:
T3:

38 / 46

Real-time Scheduling

Given a set of tasks: T1: 〈10, 30, 40〉, T2: 〈20, 60, 100〉, T3: 〈60, 200, 200〉: , find the
scheduling.

0 20 40 60 80 100 120 140 160 180 200

T1:
T2:
T3:

38 / 46

Real-time Scheduling

Given a set of tasks: T1: 〈10, 30, 40〉, T2: 〈20, 60, 100〉, T3: 〈60, 200, 200〉: , find the
scheduling.

0 20 40 60 80 100 120 140 160 180 200

T1:
T2:
T3:

38 / 46

Real-time Scheduling

Given a set of tasks: T1: 〈10, 30, 40〉, T2: 〈20, 60, 100〉, T3: 〈60, 200, 200〉: , find the
scheduling.

0 20 40 60 80 100 120 140 160 180 200

T1:
T2:
T3:

38 / 46

Real-time Scheduling

Given a set of tasks: T1: 〈10, 30, 40〉, T2: 〈20, 60, 100〉, T3: 〈60, 200, 200〉: , find the
scheduling.

0 20 40 60 80 100 120 140 160 180 200

T1:
T2:
T3:

38 / 46

Strategies

Given that p = d i.e. a task must be completed within its period.
Rate Monotonic Scheduling (RMS):

Schedule the avilable task with the shortest period
Always works if utilization is < 69% (actually less than n ∗ (21/n − 1)), where n is
the number of processes) could work for higher loads.
Simpler to reason about, easy to implement.

Earliest Deadline First (EDF):
Schedule based on the deadline, more freedom to choose tasks.
Always works if utilization is < 100%.
Used by Linux in the real-time extension (not in the regular system)

39 / 46

Strategies

Given that p = d i.e. a task must be completed within its period.
Rate Monotonic Scheduling (RMS):

Schedule the avilable task with the shortest period
Always works if utilization is < 69% (actually less than n ∗ (21/n − 1)), where n is
the number of processes) could work for higher loads.
Simpler to reason about, easy to implement.

Earliest Deadline First (EDF):
Schedule based on the deadline, more freedom to choose tasks.
Always works if utilization is < 100%.
Used by Linux in the real-time extension (not in the regular system)

39 / 46

Strategies

Given that p = d i.e. a task must be completed within its period.
Rate Monotonic Scheduling (RMS):

Schedule the avilable task with the shortest period
Always works if utilization is < 69% (actually less than n ∗ (21/n − 1)), where n is
the number of processes) could work for higher loads.
Simpler to reason about, easy to implement.

Earliest Deadline First (EDF):
Schedule based on the deadline, more freedom to choose tasks.
Always works if utilization is < 100%.
Used by Linux in the real-time extension (not in the regular system)

39 / 46

Rate Monotonic Scheduling (RMS)

Assume we have tasks: T1: 〈10, 40, 40〉, T2: 〈20, 60, 60〉, T3: 〈30, 80, 80〉.

10/40 + 20/60 + 30/80 = 6/24 + 8/24 + 9/24 = 23/24

0 10 20 30 40 50 60 70 80 90 100 110 120

T1:

T2:

T3:

40 / 46

Rate Monotonic Scheduling (RMS)

Assume we have tasks: T1: 〈10, 40, 40〉, T2: 〈20, 60, 60〉, T3: 〈30, 80, 80〉.

10/40 + 20/60 + 30/80 = 6/24 + 8/24 + 9/24 = 23/24

0 10 20 30 40 50 60 70 80 90 100 110 120

T1:

T2:

T3:

40 / 46

Rate Monotonic Scheduling (RMS)

Assume we have tasks: T1: 〈10, 40, 40〉, T2: 〈20, 60, 60〉, T3: 〈30, 80, 80〉.

10/40 + 20/60 + 30/80 = 6/24 + 8/24 + 9/24 = 23/24

0 10 20 30 40 50 60 70 80 90 100 110 120

T1:

T2:

T3:

40 / 46

Rate Monotonic Scheduling (RMS)

Assume we have tasks: T1: 〈10, 40, 40〉, T2: 〈20, 60, 60〉, T3: 〈30, 80, 80〉.

10/40 + 20/60 + 30/80 = 6/24 + 8/24 + 9/24 = 23/24

0 10 20 30 40 50 60 70 80 90 100 110 120

T1:

T2:

T3:

40 / 46

Rate Monotonic Scheduling (RMS)

Assume we have tasks: T1: 〈10, 40, 40〉, T2: 〈20, 60, 60〉, T3: 〈30, 80, 80〉.

10/40 + 20/60 + 30/80 = 6/24 + 8/24 + 9/24 = 23/24

0 10 20 30 40 50 60 70 80 90 100 110 120

T1:

T2:

T3:

40 / 46

Rate Monotonic Scheduling (RMS)

Assume we have tasks: T1: 〈10, 40, 40〉, T2: 〈20, 60, 60〉, T3: 〈30, 80, 80〉.

10/40 + 20/60 + 30/80 = 6/24 + 8/24 + 9/24 = 23/24

0 10 20 30 40 50 60 70 80 90 100 110 120

T1:

T2:

T3:

40 / 46

Rate Monotonic Scheduling (RMS)

Assume we have tasks: T1: 〈10, 40, 40〉, T2: 〈20, 60, 60〉, T3: 〈30, 80, 80〉.

10/40 + 20/60 + 30/80 = 6/24 + 8/24 + 9/24 = 23/24

0 10 20 30 40 50 60 70 80 90 100 110 120

T1:

T2:

T3: T3 missed deadline

40 / 46

Earliest Deadline First (EDF)

Assume we have tasks: T1: 〈10, 40, 40〉, T2: 〈20, 60, 60〉, T3: 〈30, 80, 80〉.

10/40 + 20/60 + 30/80 = 6/24 + 8/24 + 9/24 = 23/24

0 10 20 30 40 50 60 70 80 90 100 110 120

T1:

T2:

T3:

41 / 46

Earliest Deadline First (EDF)

Assume we have tasks: T1: 〈10, 40, 40〉, T2: 〈20, 60, 60〉, T3: 〈30, 80, 80〉.

10/40 + 20/60 + 30/80 = 6/24 + 8/24 + 9/24 = 23/24

0 10 20 30 40 50 60 70 80 90 100 110 120

T1:

T2:

T3:

41 / 46

Earliest Deadline First (EDF)

Assume we have tasks: T1: 〈10, 40, 40〉, T2: 〈20, 60, 60〉, T3: 〈30, 80, 80〉.

10/40 + 20/60 + 30/80 = 6/24 + 8/24 + 9/24 = 23/24

0 10 20 30 40 50 60 70 80 90 100 110 120

T1:

T2:

T3:

41 / 46

Earliest Deadline First (EDF)

Assume we have tasks: T1: 〈10, 40, 40〉, T2: 〈20, 60, 60〉, T3: 〈30, 80, 80〉.

10/40 + 20/60 + 30/80 = 6/24 + 8/24 + 9/24 = 23/24

0 10 20 30 40 50 60 70 80 90 100 110 120

T1:

T2:

T3:

41 / 46

Earliest Deadline First (EDF)

Assume we have tasks: T1: 〈10, 40, 40〉, T2: 〈20, 60, 60〉, T3: 〈30, 80, 80〉.

10/40 + 20/60 + 30/80 = 6/24 + 8/24 + 9/24 = 23/24

0 10 20 30 40 50 60 70 80 90 100 110 120

T1:

T2:

T3:

41 / 46

Earliest Deadline First (EDF)

Assume we have tasks: T1: 〈10, 40, 40〉, T2: 〈20, 60, 60〉, T3: 〈30, 80, 80〉.

10/40 + 20/60 + 30/80 = 6/24 + 8/24 + 9/24 = 23/24

0 10 20 30 40 50 60 70 80 90 100 110 120

T1:

T2:

T3:

41 / 46

Earliest Deadline First (EDF)

Assume we have tasks: T1: 〈10, 40, 40〉, T2: 〈20, 60, 60〉, T3: 〈30, 80, 80〉.

10/40 + 20/60 + 30/80 = 6/24 + 8/24 + 9/24 = 23/24

0 10 20 30 40 50 60 70 80 90 100 110 120

T1:

T2:

T3:

41 / 46

Earliest Deadline First (EDF)

Assume we have tasks: T1: 〈10, 40, 40〉, T2: 〈20, 60, 60〉, T3: 〈30, 80, 80〉.

10/40 + 20/60 + 30/80 = 6/24 + 8/24 + 9/24 = 23/24

0 10 20 30 40 50 60 70 80 90 100 110 120

T1:

T2:

T3:

41 / 46

Earliest Deadline First (EDF)

Assume we have tasks: T1: 〈10, 40, 40〉, T2: 〈20, 60, 60〉, T3: 〈30, 80, 80〉.

10/40 + 20/60 + 30/80 = 6/24 + 8/24 + 9/24 = 23/24

0 10 20 30 40 50 60 70 80 90 100 110 120

T1:

T2:

T3:

41 / 46

problems

With what accuracy can we determine worst case excution time?

Should we be conservative or take a chance?

Can we handle a dynamic set of tasks?

What happens when we have critical resources that are protected by locks?

42 / 46

problems

With what accuracy can we determine worst case excution time?

Should we be conservative or take a chance?

Can we handle a dynamic set of tasks?

What happens when we have critical resources that are protected by locks?

42 / 46

problems

With what accuracy can we determine worst case excution time?

Should we be conservative or take a chance?

Can we handle a dynamic set of tasks?

What happens when we have critical resources that are protected by locks?

42 / 46

problems

With what accuracy can we determine worst case excution time?

Should we be conservative or take a chance?

Can we handle a dynamic set of tasks?

What happens when we have critical resources that are protected by locks?

42 / 46

problems

With what accuracy can we determine worst case excution time?

Should we be conservative or take a chance?

Can we handle a dynamic set of tasks?

What happens when we have critical resources that are protected by locks?

42 / 46

Multi-core architectures

Scheduling for a multi-core architecture more problematic (or rather more problematic
to achieve high utilization).

Why?

43 / 46

Multi-core architectures

Scheduling for a multi-core architecture more problematic (or rather more problematic
to achieve high utilization).

Why?

43 / 46

Scheduling in Linux

How is scheduling managed in a Linux system?

O(n) scheduler: the original scheduler, did not scale well.
O(1) scheduler: multi-level feedback queues, dynamic priority, used up to version
2.6
CFS: the completely fair scheduler, O(lg(n)), default today.
BF scheduler: no I will not tell you what it stands for.

44 / 46

Scheduling in Linux

How is scheduling managed in a Linux system?

O(n) scheduler: the original scheduler, did not scale well.

O(1) scheduler: multi-level feedback queues, dynamic priority, used up to version
2.6
CFS: the completely fair scheduler, O(lg(n)), default today.
BF scheduler: no I will not tell you what it stands for.

44 / 46

Scheduling in Linux

How is scheduling managed in a Linux system?

O(n) scheduler: the original scheduler, did not scale well.
O(1) scheduler: multi-level feedback queues, dynamic priority, used up to version
2.6

CFS: the completely fair scheduler, O(lg(n)), default today.
BF scheduler: no I will not tell you what it stands for.

44 / 46

Scheduling in Linux

How is scheduling managed in a Linux system?

O(n) scheduler: the original scheduler, did not scale well.
O(1) scheduler: multi-level feedback queues, dynamic priority, used up to version
2.6
CFS: the completely fair scheduler, O(lg(n)), default today.

BF scheduler: no I will not tell you what it stands for.

44 / 46

Scheduling in Linux

How is scheduling managed in a Linux system?

O(n) scheduler: the original scheduler, did not scale well.
O(1) scheduler: multi-level feedback queues, dynamic priority, used up to version
2.6
CFS: the completely fair scheduler, O(lg(n)), default today.
BF scheduler: no I will not tell you what it stands for.

44 / 46

The Completely Fair Scheduler

Similar to stride scheduler but uses a red-black tree to order processes.

Will keep processes on the same core if it thinks it’s a good choice.
Scheduling classes:

SCHED_FIFO, SCHED_RR: high priority classes (often called real-time processes)
SCHED_NORMAL: all the regular interactive processes
SCHED_BATCH: processes that only run if there are no interactive processes available.
SCHED_IDLE: if we’ve got nothing else to do.

45 / 46

The Completely Fair Scheduler

Similar to stride scheduler but uses a red-black tree to order processes.
Will keep processes on the same core if it thinks it’s a good choice.

Scheduling classes:
SCHED_FIFO, SCHED_RR: high priority classes (often called real-time processes)
SCHED_NORMAL: all the regular interactive processes
SCHED_BATCH: processes that only run if there are no interactive processes available.
SCHED_IDLE: if we’ve got nothing else to do.

45 / 46

The Completely Fair Scheduler

Similar to stride scheduler but uses a red-black tree to order processes.
Will keep processes on the same core if it thinks it’s a good choice.
Scheduling classes:

SCHED_FIFO, SCHED_RR: high priority classes (often called real-time processes)
SCHED_NORMAL: all the regular interactive processes
SCHED_BATCH: processes that only run if there are no interactive processes available.
SCHED_IDLE: if we’ve got nothing else to do.

45 / 46

The Completely Fair Scheduler

Similar to stride scheduler but uses a red-black tree to order processes.
Will keep processes on the same core if it thinks it’s a good choice.
Scheduling classes:

SCHED_FIFO, SCHED_RR: high priority classes (often called real-time processes)

SCHED_NORMAL: all the regular interactive processes
SCHED_BATCH: processes that only run if there are no interactive processes available.
SCHED_IDLE: if we’ve got nothing else to do.

45 / 46

The Completely Fair Scheduler

Similar to stride scheduler but uses a red-black tree to order processes.
Will keep processes on the same core if it thinks it’s a good choice.
Scheduling classes:

SCHED_FIFO, SCHED_RR: high priority classes (often called real-time processes)
SCHED_NORMAL: all the regular interactive processes

SCHED_BATCH: processes that only run if there are no interactive processes available.
SCHED_IDLE: if we’ve got nothing else to do.

45 / 46

The Completely Fair Scheduler

Similar to stride scheduler but uses a red-black tree to order processes.
Will keep processes on the same core if it thinks it’s a good choice.
Scheduling classes:

SCHED_FIFO, SCHED_RR: high priority classes (often called real-time processes)
SCHED_NORMAL: all the regular interactive processes
SCHED_BATCH: processes that only run if there are no interactive processes available.

SCHED_IDLE: if we’ve got nothing else to do.

45 / 46

The Completely Fair Scheduler

Similar to stride scheduler but uses a red-black tree to order processes.
Will keep processes on the same core if it thinks it’s a good choice.
Scheduling classes:

SCHED_FIFO, SCHED_RR: high priority classes (often called real-time processes)
SCHED_NORMAL: all the regular interactive processes
SCHED_BATCH: processes that only run if there are no interactive processes available.
SCHED_IDLE: if we’ve got nothing else to do.

45 / 46

The Completely Fair Scheduler

Similar to stride scheduler but uses a red-black tree to order processes.
Will keep processes on the same core if it thinks it’s a good choice.
Scheduling classes:

SCHED_FIFO, SCHED_RR: high priority classes (often called real-time processes)
SCHED_NORMAL: all the regular interactive processes
SCHED_BATCH: processes that only run if there are no interactive processes available.
SCHED_IDLE: if we’ve got nothing else to do.

45 / 46

Summary Scheduling

Bonnie Tyler: Turnaround, every now and then ...
Bob Marley: Talking ’bout reaction
Rolling Stones: You can’t always get what you want.
Metallica: Justice for all.
Leif “Loket” Olsson: a lottery might work ok
Real-time scheduling: if we actually know the maximum execution time, the
deadline and the period.
Multi-core schedulers: you have to think twice before selecting a process.
Linux: Completely Fair Scheduler, schedules in O(lg(n)) time, similar to stride
scheduling.

46 / 46

Summary Scheduling

Bonnie Tyler: Turnaround, every now and then ...

Bob Marley: Talking ’bout reaction
Rolling Stones: You can’t always get what you want.
Metallica: Justice for all.
Leif “Loket” Olsson: a lottery might work ok
Real-time scheduling: if we actually know the maximum execution time, the
deadline and the period.
Multi-core schedulers: you have to think twice before selecting a process.
Linux: Completely Fair Scheduler, schedules in O(lg(n)) time, similar to stride
scheduling.

46 / 46

Summary Scheduling

Bonnie Tyler: Turnaround, every now and then ...
Bob Marley: Talking ’bout reaction

Rolling Stones: You can’t always get what you want.
Metallica: Justice for all.
Leif “Loket” Olsson: a lottery might work ok
Real-time scheduling: if we actually know the maximum execution time, the
deadline and the period.
Multi-core schedulers: you have to think twice before selecting a process.
Linux: Completely Fair Scheduler, schedules in O(lg(n)) time, similar to stride
scheduling.

46 / 46

Summary Scheduling

Bonnie Tyler: Turnaround, every now and then ...
Bob Marley: Talking ’bout reaction
Rolling Stones: You can’t always get what you want.

Metallica: Justice for all.
Leif “Loket” Olsson: a lottery might work ok
Real-time scheduling: if we actually know the maximum execution time, the
deadline and the period.
Multi-core schedulers: you have to think twice before selecting a process.
Linux: Completely Fair Scheduler, schedules in O(lg(n)) time, similar to stride
scheduling.

46 / 46

Summary Scheduling

Bonnie Tyler: Turnaround, every now and then ...
Bob Marley: Talking ’bout reaction
Rolling Stones: You can’t always get what you want.
Metallica: Justice for all.

Leif “Loket” Olsson: a lottery might work ok
Real-time scheduling: if we actually know the maximum execution time, the
deadline and the period.
Multi-core schedulers: you have to think twice before selecting a process.
Linux: Completely Fair Scheduler, schedules in O(lg(n)) time, similar to stride
scheduling.

46 / 46

Summary Scheduling

Bonnie Tyler: Turnaround, every now and then ...
Bob Marley: Talking ’bout reaction
Rolling Stones: You can’t always get what you want.
Metallica: Justice for all.
Leif “Loket” Olsson: a lottery might work ok

Real-time scheduling: if we actually know the maximum execution time, the
deadline and the period.
Multi-core schedulers: you have to think twice before selecting a process.
Linux: Completely Fair Scheduler, schedules in O(lg(n)) time, similar to stride
scheduling.

46 / 46

Summary Scheduling

Bonnie Tyler: Turnaround, every now and then ...
Bob Marley: Talking ’bout reaction
Rolling Stones: You can’t always get what you want.
Metallica: Justice for all.
Leif “Loket” Olsson: a lottery might work ok
Real-time scheduling: if we actually know the maximum execution time, the
deadline and the period.

Multi-core schedulers: you have to think twice before selecting a process.
Linux: Completely Fair Scheduler, schedules in O(lg(n)) time, similar to stride
scheduling.

46 / 46

Summary Scheduling

Bonnie Tyler: Turnaround, every now and then ...
Bob Marley: Talking ’bout reaction
Rolling Stones: You can’t always get what you want.
Metallica: Justice for all.
Leif “Loket” Olsson: a lottery might work ok
Real-time scheduling: if we actually know the maximum execution time, the
deadline and the period.
Multi-core schedulers: you have to think twice before selecting a process.

Linux: Completely Fair Scheduler, schedules in O(lg(n)) time, similar to stride
scheduling.

46 / 46

Summary Scheduling

Bonnie Tyler: Turnaround, every now and then ...
Bob Marley: Talking ’bout reaction
Rolling Stones: You can’t always get what you want.
Metallica: Justice for all.
Leif “Loket” Olsson: a lottery might work ok
Real-time scheduling: if we actually know the maximum execution time, the
deadline and the period.
Multi-core schedulers: you have to think twice before selecting a process.
Linux: Completely Fair Scheduler, schedules in O(lg(n)) time, similar to stride
scheduling.

46 / 46

