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A process

What is a process?

... a computation

a program i.e. a sequence of operations
a set of data structures
a set of registers
means to interact with other processes or external entities
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The C process

In C a process consist of:
a program: a set of named procedures
a call stack: provides the means to call and return from a procedure
a heap from which we can allocate new data structures
a current program pointer
.... open file descriptors, etc

Understand how the call stack works and what the heap provides.
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the stack

int foo(int x, int y) {
return x + y;

}

int bar () {
int z;
z = foo (3, 4)
return z;

stack frame
of bar
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the frame

The conceptual stack frame contains:

the arguments of the procedure
place to hold local variables
magic information to be able to return from a call
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Implementation of the stack

The CPU can be described by:

the instruction pointer (EIP): a reference to the next instruction to execute
a stack pointer (ESP): a reference to the top of the stack
a base pointer (EBP): a reference to the current stack frame
general purpose registers: used by a process to store data
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the call stack

int foo(int x, int y) {
return x + y;

}

int bar () {
int z;
z = foo (3, 4)
return z;

}
location of z

EIP

EBP

ESP
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... and more

The CPU has a set of general purpose registers. If a procedure uses these they should
be restored when the procedure returns.

The general scheme shown is how the stack is implemented on a x86 architecture,
other architectures have very different schemes.

Registers can be used to pass argument and to return values. The x86 architecture
pass first six arguments and return value in registers.

Separate the abstraction of a C procedure call from how the stack is implemented.

8 / 47



... and more

The CPU has a set of general purpose registers. If a procedure uses these they should
be restored when the procedure returns.

The general scheme shown is how the stack is implemented on a x86 architecture,
other architectures have very different schemes.

Registers can be used to pass argument and to return values. The x86 architecture
pass first six arguments and return value in registers.

Separate the abstraction of a C procedure call from how the stack is implemented.

8 / 47



... and more

The CPU has a set of general purpose registers. If a procedure uses these they should
be restored when the procedure returns.

The general scheme shown is how the stack is implemented on a x86 architecture,
other architectures have very different schemes.

Registers can be used to pass argument and to return values. The x86 architecture
pass first six arguments and return value in registers.

Separate the abstraction of a C procedure call from how the stack is implemented.

8 / 47



... and more

The CPU has a set of general purpose registers. If a procedure uses these they should
be restored when the procedure returns.

The general scheme shown is how the stack is implemented on a x86 architecture,
other architectures have very different schemes.

Registers can be used to pass argument and to return values. The x86 architecture
pass first six arguments and return value in registers.

Separate the abstraction of a C procedure call from how the stack is implemented.

8 / 47



... and more

The CPU has a set of general purpose registers. If a procedure uses these they should
be restored when the procedure returns.

The general scheme shown is how the stack is implemented on a x86 architecture,
other architectures have very different schemes.

Registers can be used to pass argument and to return values. The x86 architecture
pass first six arguments and return value in registers.

Separate the abstraction of a C procedure call from how the stack is implemented.

8 / 47



a slight problem

How is a data structure returned from a procedure call?

Three easy steps:

the caller allocates room in its stack frame for the structure,
the caller passes the location of the structure as an argument to the procedure
and,
the procedure updates the structure.

What if the caller does not know how large the structure will be?

Create a structure and return a pointer to the structure - problem solved.
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the stack

stack frame
of bar

int *foo(int x) {
int a[5] = {1 ,2 ,3 ,4 ,5};
return a;

}

int bar () {
int *z = foo (1);
printf ("z[2] is %d\n", z[2]);
return 0;

}
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not so good

We can not create structures on the stack and expect them to survive.

This is why we need the heap.
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the heap

int *foo(int x) {
int a[5] = {1 ,2 ,3 ,4 ,5};
int *h;
int i;

h = (int *) malloc (5* sizeof (int ));

for(i = 0; i != 5; i++) {
h[i] = a[i];

}
return h;

}
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the heap

{1,2,3,4,5}

safe :-)
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the heap

a memory area separated from the stack

explicit allocation
... what about deallocation?
the heap is handled using library calls in C
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the heap API

void *malloc(size_t size) : allocate size bytes on the heap, returns a
pointer to the structure

free(void *ptr) : deallocates a structure pointed to by ptr

void *calloc(size_t nmemb, size_t size) : allocate an array of nmemb
element of size bytes initialize it to zero
void *realloc(void *ptr, size_t size) : changes the size of the structure
pointed to by ptr
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how about Java

public class RightTriangle {

public double a, b, c;

public RightTriangle ( double x, double y) {
a = x;
b = y;
c = Math.sqrt(Math.pow(x ,2) + Math.pow(y ,2));

}

public double area () {
double ar = (a * b)/2;

return ar;
}

}
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how about Java

public class Test {

public static void main( String [] args) {

RightTriangle egypt = new RightTriangle (3 ,4);

double hyp = egypt.c;

double ar = egypt.area ();

System .out. format (" hypotenuse is: %.1f%n", hyp );
System .out. format (" area is is: %.1f%n", ar);

}
}
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Java - objects on the heap

In Java primitive types and references to objects are allocated on the stack.

Regular objects are allocated on the heap explicitly using the new statement.

There is no explicit deallocation, memory is reclaimed by garbage collection.

.... A Java compiler can (sometimes) detect that an object will not live passed the
point of a method return, and then allocate the object on the stack (escape analysis).
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What about C++

In C++ it is up to the programmer:
if nothing is stated an object is allocated on the stack (as in C),
using the primitive new the object is allocated on the heap (as in Java).

There is no garbage collection in C++, objects need to explicitly deallocated using the
primitive delete.
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What about Erlang

All non-primitive data structures are allocated on the heap.

Implicitly allocates data structures on the heap.
The stack is only used for primitive data structures (integers, atoms, ..) and
references to the heap.
The heap, and thus the garbage collection, is per Erlang process.
.... messages need to be copied from one heap to the other.
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What about Rust

In Rust you get the best of both worlds.

The programmer will explicitly create objects on the heap.
The compiler knows when the object should be reclaimed.
Rules of the language prevents you from doing mistakes.

The language prevents you from doing things that are possible in C.
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let’s complicate things

The JRE, Java Runtime Environment, is an abstract machine i.e. a program that
executes Java code. The JRE is typically implemented in C or in C++.
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definition of C

Programming language constructs: variable declaration, procedure calls, for-,
while-loops, etc.

The C Standard Library (ISO C11)
memory allocation: malloc, free, ...
signal handling: signal, raise, kill, ..
file operations: fopen, fclose, fread,
fwrite, ....
arithmetic, strings, ...
....

The POSIX operating system API
process handling: fork, exec, wait, ...
process communication: pipes, ..
threads handling: pthread_create, ...
managing directory and file ownership
network handling: socket, listen,
accept, ...
...

... it is the job of the operating system to provide the functionality.
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The operating system

Operating system

Application layer

Library is often just a wrapper for the system call - sometimes more complex.
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the operating system

We will focus on how the operating system provides:

means to create and start execution of a C process,
a virtual execution environment that allows several processes to execute
simultaneously,
a persistent storage accessible to all processes,
protection from unintended/malicious interference,
yet allow them to share data and communicate.
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note

We’re now presenting how the operating system might implement the process
abstraction. One should never take for granted that things are actually
implemented one way or another.

Examples are from Linux on a x86 architecture.
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from program to process

How does the operating system create a process from a program?
The program is found on some external data storage (hard-drive etc).
Memory is allocated to hold the: code, static data, heap and stack.
A process context is created holding the necessary register values etc.

code
(.text) data heap stack context
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process execution

How does the operating system control the execution of a process?

Indirect execution:

The operating system decode and execute the instructions of the user process.
This is done in Java, Erlang and many other languages based on a virtual
machine.

Direct execution:

The operating system loads the code of the user process, sets the stack and
heap pointers and jumps to the first instruction of the process.

27 / 47



process execution

How does the operating system control the execution of a process?

Indirect execution:

The operating system decode and execute the instructions of the user process.
This is done in Java, Erlang and many other languages based on a virtual
machine.

Direct execution:

The operating system loads the code of the user process, sets the stack and
heap pointers and jumps to the first instruction of the process.

27 / 47



process execution

How does the operating system control the execution of a process?

Indirect execution:

The operating system decode and execute the instructions of the user process.
This is done in Java, Erlang and many other languages based on a virtual
machine.

Direct execution:

The operating system loads the code of the user process, sets the stack and
heap pointers and jumps to the first instruction of the process.

27 / 47



process execution

How does the operating system control the execution of a process?

Indirect execution:

The operating system decode and execute the instructions of the user process.
This is done in Java, Erlang and many other languages based on a virtual
machine.

Direct execution:

The operating system loads the code of the user process, sets the stack and
heap pointers and jumps to the first instruction of the process.

27 / 47



process execution

How does the operating system control the execution of a process?

Indirect execution:

The operating system decode and execute the instructions of the user process.

This is done in Java, Erlang and many other languages based on a virtual
machine.

Direct execution:

The operating system loads the code of the user process, sets the stack and
heap pointers and jumps to the first instruction of the process.

27 / 47



process execution

How does the operating system control the execution of a process?

Indirect execution:

The operating system decode and execute the instructions of the user process.
This is done in Java, Erlang and many other languages based on a virtual
machine.

Direct execution:

The operating system loads the code of the user process, sets the stack and
heap pointers and jumps to the first instruction of the process.

27 / 47



process execution

How does the operating system control the execution of a process?

Indirect execution:

The operating system decode and execute the instructions of the user process.
This is done in Java, Erlang and many other languages based on a virtual
machine.

Direct execution:

The operating system loads the code of the user process, sets the stack and
heap pointers and jumps to the first instruction of the process.

27 / 47



who is in control?

The operating system loads the code to memory, sets the register values for stack and
heap pointers and ...

.... sets the instruction pointer (EIP).

The future is now determined by the execution of the started process.

Is this a good thing?
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limited direct execution

The user program is allowed to execute directly but is limited in that:

it will not be able to execute all instruction
it will only be able to access its own memory
it will only be allowed to execute for a limited time

How do we implement these limitations?

The hardware allows an execution to be in either “user mode” or “kernel mode”.
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life of an execution
Hardware - turn on power - start executing “BIOS”

Kernel mode: load operating system - set up interrupt descriptor table (IDT)

Kernel mode: load user program - set up stack, heap etc - start execution

User mode: run program

User mode: prepare system call - trap to kernel mode

Kernel mode: jump to system call handler

Kernel mode: handle system call - prepare result - return from trap

User mode: continue execution

Important - the interrupt descriptor table must be protected, not modified in user mode

30 / 47



life of an execution
Hardware - turn on power - start executing “BIOS”

Kernel mode: load operating system - set up interrupt descriptor table (IDT)

Kernel mode: load user program - set up stack, heap etc - start execution

User mode: run program

User mode: prepare system call - trap to kernel mode

Kernel mode: jump to system call handler

Kernel mode: handle system call - prepare result - return from trap

User mode: continue execution

Important - the interrupt descriptor table must be protected, not modified in user mode

30 / 47



life of an execution
Hardware - turn on power - start executing “BIOS”

Kernel mode: load operating system - set up interrupt descriptor table (IDT)

Kernel mode: load user program - set up stack, heap etc - start execution

User mode: run program

User mode: prepare system call - trap to kernel mode

Kernel mode: jump to system call handler

Kernel mode: handle system call - prepare result - return from trap

User mode: continue execution

Important - the interrupt descriptor table must be protected, not modified in user mode

30 / 47



life of an execution
Hardware - turn on power - start executing “BIOS”

Kernel mode: load operating system - set up interrupt descriptor table (IDT)

Kernel mode: load user program - set up stack, heap etc - start execution

User mode: run program

User mode: prepare system call - trap to kernel mode

Kernel mode: jump to system call handler

Kernel mode: handle system call - prepare result - return from trap

User mode: continue execution

Important - the interrupt descriptor table must be protected, not modified in user mode

30 / 47



life of an execution
Hardware - turn on power - start executing “BIOS”

Kernel mode: load operating system - set up interrupt descriptor table (IDT)

Kernel mode: load user program - set up stack, heap etc - start execution

User mode: run program

User mode: prepare system call - trap to kernel mode

Kernel mode: jump to system call handler

Kernel mode: handle system call - prepare result - return from trap

User mode: continue execution

Important - the interrupt descriptor table must be protected, not modified in user mode

30 / 47



life of an execution
Hardware - turn on power - start executing “BIOS”

Kernel mode: load operating system - set up interrupt descriptor table (IDT)

Kernel mode: load user program - set up stack, heap etc - start execution

User mode: run program

User mode: prepare system call - trap to kernel mode

Kernel mode: jump to system call handler

Kernel mode: handle system call - prepare result - return from trap

User mode: continue execution

Important - the interrupt descriptor table must be protected, not modified in user mode

30 / 47



life of an execution
Hardware - turn on power - start executing “BIOS”

Kernel mode: load operating system - set up interrupt descriptor table (IDT)

Kernel mode: load user program - set up stack, heap etc - start execution

User mode: run program

User mode: prepare system call - trap to kernel mode

Kernel mode: jump to system call handler

Kernel mode: handle system call - prepare result - return from trap

User mode: continue execution

Important - the interrupt descriptor table must be protected, not modified in user mode

30 / 47



life of an execution
Hardware - turn on power - start executing “BIOS”

Kernel mode: load operating system - set up interrupt descriptor table (IDT)

Kernel mode: load user program - set up stack, heap etc - start execution

User mode: run program

User mode: prepare system call - trap to kernel mode

Kernel mode: jump to system call handler

Kernel mode: handle system call - prepare result - return from trap

User mode: continue execution

Important - the interrupt descriptor table must be protected, not modified in user mode

30 / 47



life of an execution
Hardware - turn on power - start executing “BIOS”

Kernel mode: load operating system - set up interrupt descriptor table (IDT)

Kernel mode: load user program - set up stack, heap etc - start execution

User mode: run program

User mode: prepare system call - trap to kernel mode

Kernel mode: jump to system call handler

Kernel mode: handle system call - prepare result - return from trap

User mode: continue execution

Important - the interrupt descriptor table must be protected, not modified in user mode
30 / 47



the process memory layout

The operating system and user program is part of the same memory layout.
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system calls in Linux on x86 - traditional

A user process will set the system call identifier in a specific register (%eax) and store
the arguments on its stack.

An special instruction, INT 0x80, will set the execution in kernel mode and jump to
the 0x80 position in the interrupt table (IDT).

The kernel will check the system call identifier and jump to the service routine
specified by the system call table.

When the system call has been handled, execution returns to user mode using the
IRET instruction.

The Interrupt Descriptor Table can only be set using the privileged instruction
LIDT (Load Interrupt Descriptor Table).
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system calls in Linux on x86 - today

The traditional system call implementation is expensive.

Some system calls, typically reading information, do not require the full protection of
the switch from user to kernel mode.

Modern x86 processors provide more efficient support to handle system calls using the
instructions sysenter/syscall and sysexit/sysret.

Check vsyscall and vdso to learn more.
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user and kernel space

The kernel, the heart of the operating system, is executing in kernel mode (privileged
mode, ring 0) where it has complete access to the hardware resources of the machine.

We implement limited direct execution by executing a user process in user mode
(unprivileged, ring 3) were it will only be allowed to touch its own code, stack and
heap (the user space).

The kernel should not take for granted that it can trust memory references from user
space - security and portability. It should use special procedures when reading or
writing to user space.
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Take over control

If the kernel allows the user process to start executing, how does it stop it?

The user process executes a INT instruction.
The hardware generates an interrupt.

The kernel sets a timer interrupt before it allows the user process to execute.

When the interrupt is generate by the hardware, the kernel can make a decision to
schedule another process.
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Interrupts

Asynchronous interrupts: raised by the hardware: keyboard, IO, etc, can be
masked by the kernel.

Synchronous interrupts - exceptions: raised by the CPU
faults: something strange happens, will be handled by the kernel and instruction is
re-executed (if the kernel can fix it).
traps: something special happens, used mainly by debugging.
abort: severe errors that will not be fixed by the kernel.
programmed exceptions (software exceptions): raised by for example the INT
instruction, used by system calls and debuggers.

This is the Intel terminology.
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process state

readystart running

blocked

exit

scheduled

timeout

exit

I/O initiateI/O completed

Where are interrupts used?
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creating a process

How do we create a new process?

A user process can create a new process.
Functionality provided by a system call.
In Unix the procedure is . . . strange, but very efficient.
The POSIX API is not exactly what the Linux kernel provides - wrapper functions
are used.
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A knife, . . .

The fork() system call will create a new process - that is a copy of the current
process.
# include <stdlib .h>
# include <unistd .h>
# include <stdio.h>

int main(int argc , char *argv []) {

printf ("Let ’s go \n");

int pid = fork ();

printf (" Hello , the pid is %d\n", pid );

sleep (10);
return 0;

}
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is the memory shared?

int main(int argc , char *argv []) {
int x = 42;

int pid = fork ();

if(pid == 0) {
sleep (10);
printf (" Hello , I’m the child and x is %d\n", x);

} else {
sleep (10);
printf (" Hello , I’m the mother and x is %d\n", x);

}
return 0;

}
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magic

main(int argc , char *argv []) {
int x = 42;
int pid = fork ();

if(pid == 0) {
x = 12;
sleep (10);
printf (" Child: address of x is %p\n", &x);

} else {
x = 13;
sleep (10);
printf (" Mother : address of x is %p\n", &x);

}
return 0;

}

This will be explained when we look at memory virtualisation.
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what about open files

int main(int argc , char *argv []) {
FILE *foo = fopen("foo.txt", "w+");

int pid = fork ();
if(pid == 0) {

fprintf (foo , " this is the child \n");
} else {

fprintf (foo , " this is the mother \n");
}
return 0;

}
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process creation

The fork() system call will create a copy of calling process.
The memory of the two processes are separated from each other (but use the
same addresses).
Already open files are shared by the two processes.
Newly open files are not shared.
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process API

The POSIX process API (part of):

fork() : create a clone of current
process
exit() : terminate process
wait() : wait for a process to
terminate
exec() : load and start execution of
program

getpid() : get process identifier
kill() : send a signal to a process
raise() : raise an exception
sigaction() : sets a signal handler
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process scheduling

what happens when a timer interrupt is received?.
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kernel stacks

what happens when a timer interrupt is received?.
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switching context

When a timer interrupt is received:
save the current registers in the context (process table) of the current process,

decide which other process that should run,
load the stored registers of the selected process,
reset the timer, switch to user mode and,
set the instruction pointer of the selected process.

The kernel also needs a stack and uses a per-process kernel stack.
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scheduling

Next lecture:
How to decide which processes that should be scheduled for execution.

Read chapter 7, 8 and 9 in “Three Easy Pieces”.
Do the assignments, they will help you understand the nature of processes.
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