
Virtual memory - Paging

Johan Montelius

KTH

2020

1 / 32

The process

0x00000000 0xC0000000 0xffffffff

code
(.text) data heap stack kernel

Memory layout for a 32-bit Linux process

2 / 32

Segments - a could be solution

Physical memory

Processes in virtual space

Address translation by MMU
(base and bounds)

3 / 32

one problem

Physical memory

External fragmentation: free areas of free space that is hard to utilize.

Solution: allocate larger segments ... internal fragmentation.

4 / 32



another problem

virtual space code

physical memory

used

not used?

We’re reserving physical memory that is not used.

5 / 32

Let’s try again

It’s easier to handle fixed size memory blocks.

Can we map a process virtual space to a set of equal size blocks?

An address is interpreted as a virtual page number (VPN) and an offset.

6 / 32

Remember the segmented MMU
MMU

virtual addr.

+
physical address

<
yes

within bounds

no

exception

// offset

index

segment table
7 / 32

The paging MMU
MMU

virtual addr. //

page table

VPN

+

offset

physical address

? available

exception

8 / 32



the MMU

Segmentation

virtual address

linear address

within bounds

exception

Paging

physical address

exception

page available

9 / 32

a note on the x86 architecture

The x86-32 architecture supports both segmentation and paging. A virtual
address is translated to a linear address using a segmentation table. The linear
address is then translated to a physical address by paging.

Linux and Windows do not use use segmentation to separate code, data nor
stack.

The x86-64 (the 64-bit version of the x86 architecture) has dropped many
features for segmentation.

Still used to manage thread local storage and CPU specific data.

10 / 32

the process

Physical memory

Processes in virtual space

Only pages actually used need to be in memory.

11 / 32

three pages

virtual space

physical memory

available not available
(page fault)

not allocated
(segmentation fault)

12 / 32



The pagetable
The MMU page module

//

+ ?

The page table
provides translation from page
numbers to frame numbers
kernel or user space
read and write access rights
available in memory or on disk

Note: the page table is to large to fit into the MMU hardware, it is in main
memory. 13 / 32

The page table entry

example Linux on (32bit) x86

31

Present

1
12

20-bit frame number

R/W

User/Supervisor
Reference

Dirty

Global

If the page index is 20 bits, does the frame number need to be 20 bits?

14 / 32

Physical Address Extension (PAE)

In 1995 the x86 architecture provided 24-bit frame numbers. The CPU could
thus address 64 Gibyte of physical address space (24-bit frame, 12-bit offset).

Each process still had a 32-bit virtual address space, (20-bit page number, 12-bit
offset) i.e. 4 Gibyte.

The x86_64 architecture supports 48-bit virtual address space and up to 52-bit
physical address space.

Linux supports 48-bit virtual address (47-bit user space) and up to 46-bit physical
address space (64 Tibyte). Check your address space in /proc/cpuinfo.

Physical memory is in reality limited by chipset, motherboard, memory modules
etc. Check your available memory in /proc/meminfo.

15 / 32

largest server

Largest server on the market, SGI 3000, can scale up to 256 CPUs and 64 Tibyte
of RAM (NUMA) - running Linux.

16 / 32



Speed matters

movl 0x11111222, %eax

we need a page table base register, PTBR
the virtual page number, VPN, is 0x11111
read the page table entry from PTBR + (0x11111 * 8)
extract frame number PFN from the entry
the offset is 0x222
read the memory location at (PFN << 12) + 0x222

An extra memory operation for each memory reference.

17 / 32

TLB: hardware support

The CPU keeps a translation look-aside buffer, TLB, with the most recent page
table entries.

The buffer is implemented using a content-addressable memory keyed by the
virtual page number.

If the page table entry is found - great!

If the page table entry is not found - access the real page table in memory.

18 / 32

Who handles a TLB miss

RISC architecture
MIPS, Sparc, ARM
The hardware rises an interrupt.
The operating system jumps to a
trap handler.
The operating system will access
the TLB and update the TLB.

CISC architecture
x86
The hardware “knows” where to
find the page table (CR3 register).
The hardware will access the page
table and updates the TLB.

19 / 32

Process switching

What happens when we switch process?

The TLB contains the cached translations of the running process, when
switching process the TLB must (in general) be flushed.

Do we have to flush the whole TLB?

Is this best handled by the hardware or operating system?

Can we do pre-fetching of page table entries?

20 / 32



The paging MMU with TLB

virtual addr. //

TLB

VPN

+

offset

PFN
physical address

PTBR+
VPN

Page table in memory

PTE

21 / 32

Size matters

Using 4 Kibyte pages (12 bits) for a 4 Gibyte address space (32 bits) will result in
1Mi (20 bits) page table entries.

Each page table entry is 4 bytes.

A page table has the size of 4 Mibyte.

Each process has its own page table.

For 100 processes we need room for 400 Mibyte of page tables.

Problem!

22 / 32

The solution - not.

Why not use pages of size 4 Mibyte?
Use a 22 bit offset and 10 bit virtual page number.
Page table 4 Kibyte (1024 entries, 4 byte each).
Case closed!

4 Mibyte pages are used and do have advantages but it is not a general solution.

23 / 32

Mostly empty space

0x00000000 0xC0000000 0xffffffff

code
(.text) data heap stack kernel

Map only the areas that are actually used.

24 / 32



Hybrid approach - paged segmented memory

What if each segment was rarely larger than 1Ki pages of 4Kibyte.
31 0
seg

29
18-bit page number

12
12-bit offset

base/bound

bound

base

page table

frame number

page

25 / 32

Multi-level page table

31 0
10-bit directory index

22
10-bit page index

12
12-bit offset

page directory
page table

page

Used by Intel 80386

26 / 32

Mostly empty space

page directory

virtual address space

each page table can map 4 Mibyte

27 / 32

More than two levels

31 0

2-bit page global directory index

9-bit page middle directory index

29 21

9-bit page table index

20 12
12-bit offset

Scheme used in PAE, where each entry has a 24-bit physical base address. Each
page table entry was 8 bytes whide.

Trace the translation of a 32-bit virtual address to a 36-bit physical address.

28 / 32



The x86_64 architectures
A 64-bit address but only 48-bits are used.
Bits 63-47 are either 1, kernel space, or 0, user space.
The 48 bits are divided into:

9-bit page global directory index
9-bit page upper directory index
9-bit page lower directory index
9-bit page table index
12-bit offset

A page table entry is 8 bytes and contains a 40-bit physical address base
address.
The 40-bit base is combined with the 12-bit index to a 52-bit physical
address.

Linux can only handle 64 Tbyte of RAM i.e. 46 bits.
29 / 32

Inverted page tables

Why not do something completely different?
We will probably not have more than say 8 Gibyte of main memory.
If we divide this into 4 Kibyte frames we have 2 Mi frames.
Assume maintain a table with 2 Mi entries that describes which process and
page that occupies the frame.
To translating a virtual address we simply search the table (efficient if we
use a hash table).
Used by some models of PowerPC, Ultra Sparc and Itanium.

30 / 32

Summary

Segmentation is not an ideal solution (why?).
Small fixed size pages is a solution.
Speed of translation is a problem (what is the solution?)
The size of the page table is a problem (and you know how to solve it).
Inverted page tables - an alternative approach.

31 / 32

AC/DC - TLB

TLB - dynamite, makes paging possible.
32 / 32


