Virtual memory - Paging

Johan Montelius

KTH

2020

1/32

code d hea — — k k [
(.text) ata p stac erne
0x00000000 0xC0O000000 Oxffffffff

Memory layout for a 32-bit Linux process

2/32

Segments - a could be solution one problem

7/

—=<7 N
| BN

Physical memory

Address translation by MMU
(base and bounds)

3/32

N ENnLs

Physical memory

External fragmentation: free areas of free space that is hard to utilize.

Solution: allocate larger segments ... internal fragmentation.

4/32

another problem Let's try again

It's easier to handle fixed size memory blocks.

) . 9
We're reserving physical memory that is not used. Can we map a process virtual space to a set of equal size blocks?

An address is interpreted as a virtual page number (VPN) and an offset.

physical memory not used?

5/32 6/32
Remember the segmented MMU The paging MMU
MMU exception MMU exception
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, no______. U I
virtual addir. 7 offset @ yes i within bounds virtual addir. 1 offset i
index 3 VPN 3
i ---- ! | - @ available

physical addiress

7/32 8/32

the MMU a note on the x86 architecture

The x86-32 architecture supports both segmentation and paging. A virtual

| | exception A | exception . ; . . :
tual add ‘ | | address is translated to a linear address using a segmentation table. The linear
Ms %[3 %[address is then translated to a physical address by paging.
i within bounds i page available Linu;(and Windows do not use use segmentation to separate code, data nor
! | ! } stack.
. Segmentation ! Paging |
i : | i : | The x86-64 (the 64-bit version of the x86 architecture) has dropped many
| linear address ! physical address features for segmentation.
T A Still used to manage thread local storage and CPU specific data.
9/32 10/32
the process three pages

Processes in virtual space

&«@étually used need to be in memory.

not available not allocated
(page fault) (segmentation fault)

physical memory

1 1 1 1 1 1

Physical memory

11/32 12/32

The pagetable The page table entry

The MMU page module The page table
@ provides translation from page example Linux on (32bit) x86 Global User/Supervisor
el E | numbers to frame numbers Reference Present
Ll l
: 71 | @ kernel or user space 31 12 ‘
! ! @ read and write access rights] ‘
| ©) i .] i 20-bit frame number | | 1
! & ! @ available in memory or on disk /
| 3 Dirty R/W

If the page index is 20 bits, does the frame number need to be 20 bits?

Note: the page table is to large to fit into the MMU hardware, it is in main

13/32 14/32

Physical Address Extension (PAE) largest server

In 1995 the x86 architecture provided 24-bit frame numbers. The CPU could
thus address 64 Gibyte of physical address space (24-bit frame, 12-bit offset).

Each process still had a 32-bit virtual address space, (20-bit page number, 12-bit
offset) i.e. 4 Gibyte.

The x86_64 architecture supports 48-bit virtual address space and up to 52-bit
physical address space.

Linux supports 48-bit virtual address (47-bit user space) and up to 46-bit physical
address space (64 Tibyte). Check your address space in /proc/cpuinfo.

Physical memory is in reality limited by chipset, motherboard, memory modules / \
etc. Check your available memory in /proc/meminfo. Largest server on the market, SGI 3000, can scale up to 256 CPUs and 64 Tibyte
of RAM (NUMA) - running Linux.

15/32 16/32

Speed matters TLB: hardware support

@ we need a page table base register, PTBR The CPU keeps a translation look-aside buffer, TLB, with the most recent page
o the virtual page number, VPN, is 0x11111 table entries.
movl 0x11111222, %eax o read the page table entry from PTBR + (0x11111 * 8) The buffer is implemented using a content-addressable memory keyed by the
@ extract frame number PFN from the entry virtual page number.
@ the offset is 0x222
@ read the memory location at (PFN << 12) + 0x222 If the page table entry is found - great!
An extra memory operation for each memory reference. If the page table entry is not found - access the real page table in memory.

17/32 18/32

Who handles a TLB miss Process switching

What happens when we switch process?

RISC architecture CISC architecture
o MIPS, Sparc, ARM o x86 The TLB contains the cached translations of the running process, when
@ The hardware rises an interrupt. @ The hardware “knows” where to switching process the TLB must (in general) be flushed.
@ The operating system jumps to a find the page table (CR3 register).
trap handler. @ The hardware will access the page Do we have to flush the whole TLB?
@ The operating system will access table and updates the TLB.
the TLB and update the TLB. Is this best handled by the hardware or operating system?

Can we do pre-fetching of page table entries?

19/32 20/32

The paging MMU with TLB Size matters

virtual addr. i 1 offset i Using 4 Kibyte pages (12 bits) for a 4 Gibyte address space (32 bits) will result in
EVPN i 1Mi (20 bits) page table entries.
| LB PFN ! Each page table entry is 4 bytes.
EVPN physical addiress A page table has the size of 4 Mibyte.
oTE | @ PTBR | Each process has its own page table.
:”77V7”””77”””””””””””J For 100 processes we need room for 400 Mibyte of page tables.
oo TT T Problem!
— Page table in memory!
21/32 22/32
The solution - not. Mostly empty space
code
(text) data heap |— «—stack kernel
Why not use pages of size 4 Mibyte? '

@ Use a 22 bit offset and 10 bit virtual page number. 0x00000000 0xC0000000 Oxffffffff
o Page table 4 Kibyte (1024 entries, 4 byte each).

@ Case closed!

4 Mibyte pages are used and do have advantages but it is not a general solution.

Map only the areas that are actually used.

23/32 24/32

Hybrid approach - paged segmented memory Multi-level page table

31 22 12 0

What if each segment was rarely larger than 1Ki pages of 4Kibyte. 10-bit directory index | 10-bit page index 12-bit offset
31 29 12 0
Ség 18-bit page number 12-bit offset page directory
1 page table
k bound page Ll page
Rt
“base/bound | page table
,,,,,,,,,,,, frame number——]
base
Used by Intel 80386
25/32 26 /32
Mostly empty space More than two levels
page directory / \\ \\\ 31 29 2120 12 0

12-bit offset

{
9-bit page table index

) 9-bit page middle directory index
each page table can map 4 Mibyte

2-bit page global directory index

Scheme used in PAE, where each entry has a 24-bit physical base address. Each
page table entry was 8 bytes whide.

virtual address space
Trace the translation of a 32-bit virtual address to a 36-bit physical address.

27/32 28/32

The x86_64 architectures Inverted page tables

A 64-bit address but only 48-bits are used.

Bits 63-47 are either 1, kernel space, or 0, user space.
The 48 bits are divided into:
o 9-bit page global directory index

Why not do something completely different?

@ We will probably not have more than say 8 Gibyte of main memory.

o O-bit page upper directory index o If we divide this into 4 Kibyte frames we have 2 Mi frames.
o 9-bit page lower directory index @ Assume maintain a table with 2 Mi entries that describes which process and
o 9-bit page table index page that occupies the frame.
o 12-bit offset
@ To translating a virtual address we simply search the table (efficient if we
@ A page table entry is 8 bytes and contains a 40-bit physical address base use a hash table).
address. @ Used by some models of PowerPC, Ultra Sparc and Itanium.
@ The 40-bit base is combined with the 12-bit index to a 52-bit physical
address.

Linux can only handle 64 Tbyte of RAM i.e. 46 bits.

29/32 30/32

Summary AC/DC - TLB

@ Segmentation is not an ideal solution (why?).

@ Small fixed size pages is a solution.

@ Speed of translation is a problem (what is the solution?)

@ The size of the page table is a problem (and you know how to solve it).
@ Inverted page tables - an alternative approach.

TLB - dynamite, makes paging possible.

31/32 32/32

