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The process

0x00000000 0xC0000000 0xffffffff

code
(.text) data heap stack kernel

Memory layout for a 32-bit Linux process
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64-bit Linux on a x86_64 architecture

0x00... 0x00007ff.. 0xffff800.. 0xff...

code data heap stack kernel

not used
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Memory virtualization

Every process has an address space from zero to some maximal address.

A program contains instructions that of course rely on that code and data can be
found at expected addresses.

We only have one physical memory.

Let’s start from the beginning.
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IBM System 360

IBM System 360
1964, 8-64 Kbyte memory
12+12 bit address space
batch operating system

Chief architect: Gene Amdahl
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when things were simple

Batch processing:

0x0000

0xffff
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The Dartmouth Time-Sharing System

GE-235
1964
20-bit word
8 Kword address space

Arnold Spielberg was in the team that designed the GE-235
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time-sharing

Time-sharing:

0x0000

0xffff
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why not switch between two programs

If both programs will fit in memory:

0x0000

0xffff

What is the problem?
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Virtual memory

Physical memory
0x0000

0xffff

Transparent: processes should be
unaware of virtualization.
Protection: processes should not be
able to interfere with each other.
Efficiency: execution should be as
close to real execution as possible.
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Emulator - simple but slow
Physical memory

emulator

data

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x5fff

Process view

0x0000

0x2fff

Let the operating system run an
emulator that interprets the
operations of the process and
changes the memory addresses as
needed.

This is similar to how the JVM works
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Static relocation - ehh, static

Physical memory
0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x5fff

Process view

0x0000

0x1fff

When a program is loaded, all references to
memory locations are changed so that they
correspond to the actual location in RAM
where the program is loaded.

How do we know we have changed all
addresses?
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Dynamic relocation

Change every memory reference, on the fly, to a region in memory allocated for the
process.

CPU
MMU RAM
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Base register
MMU

virtual addr.
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Base register
MMU
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Base problem

Who is allowed to change the
base register?
How do we prevent one
process from overwriting
another process?

Physical memory
0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x5fff

Process view

Can we prevent this at compile or load time?
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Base and bound
MMU

virtual addr.
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Base and bound

Pros:
Transparent to a process.
Simple to implement.
Easy to change process.

Cons:
How do we share data?
Wasted memory.
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shared read-only segments
Physical memory

How do we write code that can be shared?
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Internal fragmentation

Physical memory
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Internal fragmentation

Physical memory Process view

unused
wasted
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Burroughs B5000

1961

Designed for high-level languages:
ALGOL-60
Memory access through a set of
segment descriptors i.e. the view of a
process is not a consecutive memory
rather a set of individual memory
segments.

Donald Knuth was part of the design team.
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ALGOL 60

procedure Absmax(a) Size:(n, m) Result:(y) Subscripts:(i, k);
value n, m; array a; integer n, m, i, k; real y;

comment The absolute greatest element of the matrix a ...

begin
integer p, q;
y := 0; i := k := 1;
for p := 1 step 1 until n do

for q := 1 step 1 until m do
if abs(a[p, q]) > y then

begin y := abs(a[p, q]);
i := p; k := q

end
end Absmax
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Process view

The view of the assembler programmer.

0x0000

0x1000

0x2000

0x3000

0x3fff

The view of the ALGOL programmer.

procedures

data
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Segmented architecture

Physical memory

24 / 35



Segmented architecture

Physical memory Process A

24 / 35



Segmented architecture

Physical memory Process A

24 / 35



Segmented architecture

Physical memory Process A

24 / 35



Segmented architecture

Physical memory Process A

24 / 35



Segmented architecture

Physical memory Process A

24 / 35



Segmented architecture

Physical memory Process A

24 / 35



Segmented architecture

Physical memory Process A

Process B

24 / 35



Segmented architecture

Physical memory Process A

Process B

24 / 35



Segmented architecture

Physical memory Process A

Process B

24 / 35



Segmented architecture

Physical memory Process A

Process B

24 / 35



Segmented architecture

Physical memory Process A

Process B

shared code
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Segmented MMU
MMU

virtual addr.

base

+
physical address

bound

<
yes

within bounds

no

exception
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DECsystem10

PDP-10
1966, 1 MHz
36 bit words
16 bit process address space
(64Kword)
18 bit physical address (256 Kword)
base and bound

The PDP10 had two segments per process, one read only code segment and one
read/write for data.
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ARPANET 1977
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Segmentation: the solution

- not

Segments have variable size.

Reclaiming segments will cause holes
(external fragmentation).
Compaction needed.

Is it possible to do compaction?
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large grain vs fine grain segments

Using few large segments is easier to implement.

Using many small segments would allow the compiler and operating system to do a
better job.
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The Altair 8800

Intel 8080
1972
2 MHz
16 bit address space (64 Kbyte)

Altair 8800 would have 4 or 8 Kbytes of
memory.
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The workhorse: 8086

Intel 8086
1978, 5 MHz
16 bit address space (64 Kbyte)
20 bit memory bus (1 Mbyte)
no protection of segments
segments for: code, data, stack, extra
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Segment addressing in 8086 - real mode

segment 16 bits

offset 16 bits

bus 20 bits

0 KB

64 KB

128 KB

192 KB

256 KB

320 KB

384 KB

Segment register chosen based on
instruction: code segment, stack
segment, data segment (and the extra
segment.
The segment architecture available
still today in real mode i.e. the 16-bit
mode that the CPU is initally in.
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Segment addressing in 80386 - protected mode
MMU

virtual addr. offset

+

<
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Linux and segmentation

The segments descriptors of code, data and stack all have base address set to 0x0
and limit to 0xffffffff i.e. they all referre to the same 4 Gibyte linear address
space.

In x86_64 long mode (64 bit mode) Intel removed some support for segments and
enforce that these segments are set to 0x0 and 0xff..ff.
Segmentation is still used to refere to memory that belongs to a specific core or to
thread specific memory.
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Segmentation is still used to refere to memory that belongs to a specific core or to
thread specific memory.
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Summary

Virtual address space: provide a process with a view of a private address space.

Transparent: processes should be
unaware of virtualization.
Protection: processes should not be
able to interfere with each other.
Efficiency: execution should be as
close to real execution as possible.

Emulator - two slow.
Static relocation - not flexible.
Dynamic relocation:

base and bound - simple to
implement
segmentation - more flexible
problems: fragmentation, sharing of
code

Cliffhanger - paging, the solution.
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