Johan Montelius

KTH

2020

1/35

code d h . - " " |
(.text) ata eap stac erne
0x00000000 0xC0000000 Oxffffffff

Memory layout for a 32-bit Linux process

2/35

64-bit Linux on a x86__64 architecture

code

data

heap

—

«—|stack

not used

kernel

0x00. ..

0x00007£ff. .

O0xf£f££800. .

Oxff...

3/35

Memory virtualization

Every process has an address space from zero to some maximal address.

A program contains instructions that of course rely on that code and data can be
found at expected addresses.

We only have one physical memory.

4/35

IBM System 360

IBM System 360
e 1964, 8-64 Kbyte memory
@ 12-+12 bit address space

@ batch operating system

Chief architect: Gene Amdahl

5/35

when things were simple

Batch processing:

0x0000

OxfFff '--------- |

6/35

The Dartmouth Time-Sharing System

GE-235
e 1964
@ 20-bit word

@ 8 Kword address space

Arnold Spielberg was in the team that designed the GE-235

7/35

8/35

time-sharing

Time-sharing:

0x0000

OxfFff '--------- |

9/35

why not switch between two programs

If both programs will fit in memory:

0x0000

OXFEEE --------- J

What is the problem?

10/35

Virtual memory

Physical memory Process view
0x0000 S %0000
3 3 @ Transparent: processes should be
: ! unaware of virtualization.
| 3 @ Protection: processes should not be
S OxTEEE able to interfere with each other.
T 1 0x0000 4 Efficiency: execution should be as
i | close to real execution as possible.
I ' OxAfff

Oxffff

11/35

Emulator - simple but slow

Physical memory

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

Oxbfff

emulator

data

Process view

——————————— 0x0000

|
| |
| |
| |
! !
! !
| !
| |
| |
L

___________ 'Ox2fff

This is similar to how the JVM works

Let the operating system run an
emulator that interprets the
operations of the process and
changes the memory addresses
as needed.

12/35

Static relocation - ehh, static

Physical memory

0x0000 .
Process view
0x1000 Ty 1 0x0000 When a program is loaded, all references
0x1200 | 0x200 to memory locations are changed so that
0x2000 } } they correspond to the actual location in
l l RAM where the program is loaded.
0x3000 Tt 'Ox1fff
0x3200 | .
0x4000 R 0x0000 How do we know we have changed all
U 0x200 3 addresses?
0x5000 [EEEEEEE - 0x0fff

Oxbfff

13/35

Dynamic relocation

Change every memory reference, on the fly, to a region in memory allocated for
the process.

virtual addr physical addr
MMU RAM

CPU

data

14/35

—
(O]
-
BED
o0
(D)
—
(D)
0
(9}
e}

physical address

virtual addr

15/35

Base problem

Physical memory

0x0000 .
Process view
0x1000 R Rt :
@ Who is allowed to change 0%2000 | 0x2200 |
the base register? | |
@ How do we prevent one 0x3000 S S l
process from overwriting
another process? 0x4000 N :
0x5000
Oxbfff

Can we prevent this at compile or load time? 163

Base and bound

MMU exception

within bounds

e

physical address

17/35

Base and bound

Pros:
- ‘t Cons:
@ Transparent to a process.
_ P _ P @ How do we share data?
@ Simple to implement.
o Wasted memory.
@ Easy to change process.

18/35

shared read-only segments

Physical memory

How do we write code that can be shared?

19/35

Internal fragmentation

Physical memory Process view
Iwast 2d

20/35

Burroughs B5000

e 1961

@ Designed for high-level languages:
ALGOL-60

@ Memory access through a set of
segment descriptors i.e. the view of
a process is not a consecutive
memory rather a set of individual
memory segments.

Donald Knuth was part of the design team.

21/35

ALGOL 60

procedure Absmax(a) Size:(n, m) Result:(y) Subscripts: (i, k);
value n, m; array a; integer n, m, i, k; real y;

comment The absolute greatest element of the matrix a ...

begin
integer p, Qq;
y :=0; 1 :=k :=1;
for p := 1 step 1 until n do
for q := 1 step 1 until m do
if abs(alp, ql) > y then
begin y := abs(alp, ql);
i::=p; k:=q
end
end Absmax 235

Process view

The view of the assembler programmer. The view of the ALGOL programmer.
0x0000 procedures
0x1000 data
0x2000
0x3000

0x3fff

23/35

Segmented architecture

Physical memory Process A

o
-
-

D

shared code

24/35

Segmented MMU

MMU exception
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, no______._
virtual add:r. offset yes
At @ , within bounds

fndex ‘ i

segment table
25/35

DECsystem10

DECsystem-10.

PDP-10
e 1966, 1 MHz
@ 36 bit words

@ 16 bit process address space
(64Kword)

@ 18 bit physical address (256 Kword)
@ base and bound

The PDP10 had two segments per process, one read only code segment and one
read/write for data. 26/35

ARPANET 1977

ARPANET LOGICAL MAP, MARCH 1977

Fop- 1t | [bEc-2050] [PLURIBUS

= DATA ~
ECUCU’W% [ror-n1] [poe-n] FOP0 COMP!
5 5 o
LLELE e utam WLINOIS wearg [PRECI0 EDe10) L=
m MITS CCA RCCS) RCC
360767 DEC-109¢ POP-10 50 ol
PPy D = o
PDP-1} POP-11 - [H68/80 [sps-aT]
HAWAN 0710} £or-11 - (P, mll
AMES IS SRI2 [FOP-11
PO
AMES 16 SR1 51 R i RCC
POP-10 worm] | [For T EcuiPse | [BECT080)
X0] 21\ e =T
BOP-11 POP-I0 FOP 1 BEN 40
oy LINCOLN BeN PoP_11
OVA 800 hoC 301
FOP-10] [PARC MAXC2| H-6180)] 68| oEC
(3
SUMEX TYMSHARE o [+-€189] [Pop-w]
STANFORD VARWAN TS, = bictas
et 3707195 ooty
= MARVAR o~ PDP- 1
0P -10 — s
POP-1Q GWC POP -1t NTU
oI $p5-41 FOP- 10 [UNIVAC-1108]
S0, |sce = oy
URIVAC 108 wes goce BELVOIR Xy RUTGERS THOF-11
POP- 11
PLI ucLa POP-11 usc
T 360/91
NUC PDP-1! POP- 10|
NELC POP-1Y)
[FPS AP-1208] POP-10
370-158] RAND
=10 B
G fhpoP-1]
is1521POP-N 3607155
15722 AFWL Texas GUNTER EGLN Sentacon |°EC 2080
= vz e
s €DC6400
Chceeoo] | essco | €0c 6600
CDC 7600

OIMP A PLURIBUS MR
D TP ow SATELLITE GRCUIT
(PLEASE NOTE THAT WHILE THIS MAP SHOWS THE HOST POPULATION OF THE NETWORK ACCORDING TO THE BEST
INFORMATION OBTAINABLE,NO CLAIM CAN BE MADE FOR (TS ACCURACY)}
NAMES SHOWN ARE IMP NAMES. NOT INECESSARILY) HOST NAMES

27/35

Segmentation: the solution - not

@ Segments have variable size.

@ Reclaiming segments will cause
holes (external fragmentation).

@ Compaction needed.

Is it possible to do compaction?

28/35

large grain vs fine grain segments

Using few large segments is easier to implement.

Using many small segments would allow the compiler and operating system to do
a better job.

29/35

The Altair 8800

HOW TO “READ” FM TUNER SPECIFICATIONS

Popular Electronics

CTRONICS MAGAZINE JANUARY 1975/ 758

'S LARGEST-SELLING ELE

PROJECT BREAKTHROUGH!

World’s First Minicomputer Kit
to Rival Commercial Models...

"ALTAIR 8800

SAVE OVER $1000

Intel 8080

e 1972

e 2 MHz

@ 16 bit address space (64 Kbyte)
Altair 8800 would have 4 or 8 Kbytes of

memory.

30/35

The workhorse: 8086

Intel 8086
@ 1978, 5 MHz
@ 16 bit address space (64 Kbyte)
@ 20 bit memory bus (1 Mbyte)
@ no protection of segments

@ segments for: code, data, stack,
extra

31/35

Segment addressing in 8086 - real mode

0 KB
segment 16 bits
64 KB [——I .
‘ _ @ Segment register chosen based on
198 KB ;?%ts instruction: code segment, stack
Lo segment, data segment (and the
192 KB ——— extra segment.
| @ The segment architecture available
256 KB bus 20 bits still today in real mode i.e. the
A ‘ 16-bit mode that the CPU is
320 KB initally in.
384 KB

32/35

Segment addressing in 80386 - protected

MMU exception

virtual addr. offset

- P bound 1
|code] 1descriptor};

I
|
|
|
|
|
|
I
l
! " base linear address
stack w |
|
|
|
|
I
I
I
I
I
|

] - gdr |

|
:
|
segment selectors oo --
|
!
!
|
|
|
|
|
|
|
|
|
!
!
|
|
|

33/35

Linux and segmentation

@ The segments descriptors of code, data and stack all have base address set
to 0x0 and limit to Oxffffffff i.e. they all referre to the same 4 Gibyte
linear address space.

@ In x86_64 long mode (64 bit mode) Intel removed some support for
segments and enforce that these segments are set to 0x0 and Oxff..ff.

@ Segmentation is still used to refere to memory that belongs to a specific
core or to thread specific memory.

34/35

Virtual address space: provide a process with a view of a private address space.

@ Transparent: processes should be
unaware of virtualization.

@ Protection: processes should not be

able to interfere with each other.

o Efficiency: execution should be as

close to real execution as possible.

Cliffhanger - paging, the solution.

@ Emulator - two slow.
@ Static relocation - not flexible.
Dynamic relocation:

base and bound - simple to
implement

e segmentation - more flexible
e problems: fragmentation, sharing

of code

35/35

