Memory

Johan Montelius

KTH

2019
The process

Memory layout for a 32-bit Linux process
64-bit Linux on a x86_64 architecture

- code
- data
- heap
- stack
- not used
- kernel

0x00... 0x00007ff... 0xffff800... 0xff...
Memory virtualization

Every process has an address space from zero to some maximal address.

A program contains instructions that of course rely on that code and data can be found at expected addresses.

We only have one physical memory.
IBM System 360

- Chief architect: Gene Amdahl
- 1964, 8-64 Kbyte memory
- 12+12 bit address space
- Batch operating system
when things were simple

Batch processing:

0x0000

0xffff
Arnold Spielberg was in the team that designed the GE-235

GE-235

- 1964
- 20-bit word
- 8 Kword address space
Time-sharing:

0x0000

0xffff
why not switch between two programs

If both programs will fit in memory:

What is the problem?
Virtual memory

- Transparent: processes should be unaware of virtualization.
- Protection: processes should not be able to interfere with each other.
- Efficiency: execution should be as close to real execution as possible.
Emulator - simple but slow

Let the operating system run an emulator that interprets the operations of the process and changes the memory addresses as needed.

This is similar to how the JVM works
When a program is loaded, all references to memory locations are changed so that they correspond to the actual location in RAM where the program is loaded.

How do we know we have changed all addresses?
Dynamic relocation

Change every memory reference, on the fly, to a region in memory allocated for the process.
Base register

MMU

virtual addr

+ base

physical address
Base problem

- Who is allowed to change the base register?
- How do we prevent one process from overwriting another process?

Can we prevent this at compile or load time?
Base and bound

MMU

virtual addr → < bound

base

physical address → yes no

exception

within bounds
Base and bound

Pros:
- Transparent to a process.
- Simple to implement.
- Easy to change process.

Cons:
- How do we share data?
- Wasted memory.
How do we write code that can be shared?
Internal fragmentation

Physical memory

Process view

wasted

unused
Burroughs B5000

- 1961
- Designed for high-level languages: ALGOL-60
- Memory access through a set of segment descriptors i.e. the view of a process is not a consecutive memory rather a set of individual memory segments.

Donald Knuth was part of the design team.
procedure Absmax(a) Size:(n, m) Result:(y) Subscripts:(i, k);
 value n, m; array a; integer n, m, i, k; real y;

comment The absolute greatest element of the matrix a ...

begin
 integer p, q;
 y := 0; i := k := 1;
 for p := 1 step 1 until n do
 for q := 1 step 1 until m do
 if abs(a[p, q]) > y then
 begin y := abs(a[p, q]);
 i := p; k := q
 end
 end Absmax
Process view

The view of the assembler programmer.

The view of the ALGOL programmer.

The view of the assembler programmer.

- The memory space is divided into two sections:
 - **Procedures** (0x0000 to 0x1000)
 - **Data** (0x1000 to 0x3fff)

The view of the ALGOL programmer.

- The memory space is divided into three sections:
 - **Procedures** (0x1000 to 0x2000)
 - **Data** (0x2000 to 0x3000)
 - **Global variables** (0x3000 to 0x3fff)
Segmented architecture

Physical memory

Process A

shared code

Process B
Segmented MMU

virtual addr. \(\rightarrow \) offset \(\rightarrow \) \(<\) yes yes no

\(\rightarrow \) index \(\rightarrow \) segment table

\(\rightarrow \) physical address

within bounds
The PDP10 had two segments per process, one read only code segment and one read/write for data.
ARPANET LOGICAL MAP, MARCH 1977

(Please note that while this map shows the host population of the network according to the best information obtainable, no claim can be made for its accuracy.)

Names shown are IMP names, not necessarily host names.
Segmentation: the solution - **not**

- Segments have variable size.
- Reclaiming segments will cause holes (external fragmentation).
- Compaction needed.

Is it possible to do compaction?
Using few large segments is easier to implement.

Using many small segments would allow the compiler and operating system to do a better job.
The Altair 8800

Intel 8080

- 1972
- 2 MHz
- 16 bit address space (64 Kbyte)

Altair 8800 would have 4 or 8 Kbytes of memory.
The workhorse: 8086

Intel 8086
- 1978, 5 MHz
- 16 bit address space (64 Kbyte)
- 20 bit memory bus (1 Mbyte)
- no protection of segments
- segments for: code, data, stack, extra
Segment addressing in 8086 - real mode

- Segment register chosen based on instruction: *code segment*, *stack segment*, *data segment* (and the extra segment).
- The segment architecture available still today in *real mode* i.e. the 16-bit mode that the CPU is initially in.
Segment addressing in 80386 - protected mode

MMU

virtual addr. offset

Segment selectors

- code
- stack
- data

descriptor

base +

bound

linear address

Global Descriptor Table (GDT)

gdtr

ok

bound

no

exception
The segments descriptors of code, data and stack all have base address set to 0x0 and limit to 0xffffffff i.e. they all refer to the same 4 Gbyte linear address space.

In x86_64 long mode (64 bit mode) Intel removed some support for segments and enforce that these segments are set to 0x0 and 0xffff..ff.

Segmentation is still used to refer to memory that belongs to a specific core or to thread specific memory.
Virtual address space: provide a process with a view of a private address space.

- Transparent: processes should be unaware of virtualization.
- Protection: processes should not be able to interfere with each other.
- Efficiency: execution should be as close to real execution as possible.

Cliffhanger - paging, the solution.

- Emulator - two slow.
- Static relocation - not flexible.
- Dynamic relocation:
 - base and bound - simple to implement
 - segmentation - more flexible
 - problems: fragmentation, sharing of code