Memory
code d hea — — k k |
(.text) ata p stac erne
Johan Montelius
KTH 0x00000000 0xC0O000000 Oxffffffff
2020

Memory layout for a 32-bit Linux process

2/35

1/35

64-bit Linux on a x86_64 architecture Memory virtualization

Every process has an address space from zero to some maximal address.

A program contains instructions that of course rely on that code and data can be
found at expected addresses.

We only have one physical memory.

code data heap |— «—|stack| not used kernel

0x00. .. 0x000071£f. . Oxfff£800.. Oxff...

3/35 4/35

IBM System 360

when things were simple

Batch processing:

IBM System 360 0%0000 oy
e 1964, 8-64 Kbyte memory | 3
@ 12+12 bit address space | i
@ batch operating system | |

Oxffff'--------- |
Chief architect: Gene Amdahl

5/35 6/35

The Dartmouth Time-Sharing System

GE-235
e 1964
@ 20-bit word
@ 8 Kword address space

Arnold Spielberg was in the team that designed the GE-235

7/35 8/35

time-sharing

Time-sharing:

0x0000

OXFEEE - ------- |

Virtual memory

Physical memory
0x0000 [

Oxffff

Process view

@ Transparent: processes should be

unaware of virtualization.

o Efficiency: execution should be as
close to real execution as possible.

9/35

@ Protection: processes should not be
able to interfere with each other.

11/35

why not switch between two programs

If both programs will fit in memory:

0x0000

OXEEEE - ------- |

What is the problem?

Emulator - simple but slow

Physical memory
0x0000 =——"=

emulator

0x1000 |——t----1------- » 0x0000

0x2000 data

0x3000 | —— ["t 'Ox2fff

0x4000

0x5000

Oxbfff

This is similar to how the JVM works

Process view

10/35

Let the operating system run an

emulator that interprets the
operations of the process and
changes the memory addresses

as needed.

12/35

Static relocation - ehh, static Dynamic relocation

Physical memory Change every memory reference, on the fly, to a region in memory allocated for
0x0000 Process view the process.
0x1000 TV 1 0x0000 When a program is loaded, all references
0x1200 i 0x200 i to memory locations are changed so that
0x2000 | 1 they correspond to the actual location in
0x3000) i 3 Ox1fEs RAM where the program is loaded.
) h i virtual addr physical addr
0x3200 . e,
. MMU RAM
0x4000 . \--------0x0000 How do we know we have changed all CPU
U1 0x200 ! addresses?
0x5000 Ne------- 0xOfff data
Oxbfff
13/35 14/35
Base register Base problem
MMU Physical memory
0x0000 .
Process view
0x1000 feemymmnee- :
virtual addr! l . | |
; ! o Who is aIIOV\{ed to change 0%2000 | 0x2200 |
l l the base register? | |
3 i @ How do we prevent one 0x3000 O S 1
l 1 process from overwriting .
| @ } another process? 0x4000 L Nmeeee- :
l physical address N |
: 0x5000
1 1
| | Ox5££f

ST Can we prevent this at compile or load time?

15/35 16/35

Base and bound Base and bound

MMU exception
SOl 0.1
virtual addr,: yes . Pros: .

i @ within bounds Cons:

@ Transparent to a process.
)) @ How do we share data?
@ Simple to implement.
e Wasted memory.

e Easy to change process.

physical address

17/35 18/35

Internal fragmentation

Physical memory Process view
lwast od

How do we write code that can be shared?
19/35 20/35

Burroughs B5000 ALGOL 60

procedure Absmax(a) Size:(n, m) Result:(y) Subscripts:(i, k);
value n, m; array a; integer n, m, i, k; real y;

e 1961
o Designed for high-level languages: comment The absolute greatest element of the matrix a ...
ALGOL-60
@ Memory access through a set of begin
segment descriptors i.e. the view of integer p, q;
a process is not a consecutive y :=0; i:=k :=1;
memory rather a set of individual for p := 1 step 1 until n do
memory segments. for q := 1 step 1 until m do
7 if abs(alp, ql) > y then
begin y := abs(alp, ql);
Donald Knuth was part of the design team. & i ¥= p; k := z 4
end
21/35 end AbSmaX 22/35
Process view Segmented architecture
Physical memory Process A
The view of the assembler programmer. The view of the ALGOL programmer.
\
0x0000 procedures

P B
0x1000 data S\ rocess

0x2000

Ox3fff
e —

shared code

23/35 24/35

Segmented MMU DECsystem

MMU exception

DECsystem-10.

PDP-10
@ 1966, 1 MHz
@ 36 bit words

@ 16 bit process address space
(64Kword)

18 bit physical address (256 Kword)
base and bound

within bounds

|
|
|
|
+
|
|
|
|
|
|
|
1
|
|
|
[

physical address

The PDP10 had two segments per process, one read only code segment and one
25/35 read/write for data. 26/35

ARPANET LOGICAL MAP, MARCH 1977

FOP-T DATA —
Bl o) (o) s N 1 B G e Ve
[P} T CCR RCCS] Rce
0] POP-10
[FeE] | e o oy | [50 [eee]
o awess \| T smalf ey For g
o] i AL L0793, o] @ Segments have variable size.
g {pumxE) locu-30.4] M40
Eeei] (e Bl N SN T Fein]
e INERI e @ Reclaiming segments will cause
suMEx Frmswane 270 N\ 2189 [Fop-r] 0
STaronS 3 7 sz [== Nz hol | f :
o /e oles (external fragmentation).
] [z
servomyd ‘m— @ Lompaction neeaeaq.
{DCEC _rmsmy) ABERDEEN
ey
gl
T
EGLIN 3607195
[GEC 4080
1s122 AFWL TEXAS GUNTER EGLIN PENTAGON
Owp A PLURIBUS M [cocae00 m e Is it ible to d m tion?
BT e sareLLITE tarcurT coceson S It pOssIbI€ TO dO compaction !

(PLEASE NOTE THAT WHILE THIS MAP SHOWS THE HOST POPULATION OF THE NETWORK ACCORDING TO THE BEST
INFORMATION OBTAINABLE,NO CLAIM CAN BE MADE FOR (TS ACCURACY)
NAMES SHOWN AHE IMF NAVES, NOT INECESSARILY) HOST NAMES 27/35 28/35

large grain vs fine grain segments The Altair 8800

HOW TO “READ” FM TUNER SPECIFICATIONS

Popular Electronics ..., 5050

e 2 3 5 et
WORLD'S LARGEST-SELLING ELECTRONICS MAGAZINE JANUARY 1975/ 756

Using few large segments is easier to implement.

PROJECT BREAKTHROUGH e 1972
Using many small segments would allow the compiler and operating system to do World's First Mimicomputer Kit ° 2 MHz
N b : ’ P i to Rival Commercial Models.. @ 16 bit address space (64 Kbyte)

a better job. “ 8800"
s il ol OVEF o Altair 8800 would have 4 or 8 Kbytes of

memory.

&

29/35 30/35

The workhorse: 8086 Segment addressing in 8086 - real mode
0 KB
segment 16 bits
Intel 8086 64 KB —

! ' @ Segment register chosen based on
e 1978, 5 MHz 198 KB ;f{%ﬁ instruction: code segment, stack
segment, data segment (and the

@ 16 bit address space (64 Kbyte) L
@ 20 bit memory bus (1 Mbyte) 192 KB — extra segment.
@ no protection of segments - @ The segment architecture available
@ segments for: code, data, stack 256 kB bus 210 bits still ’Foday in real mode i.e. .the
extra ' ' ' oo 16-bit mode that the CPU is
320 KB initally in.

384 KB

31/35 32/35

Segment addressing in 80386 - protected mode

MMU exception
| no
virtual addr. offset Q ok

m””””‘: bound
1descriptor;;

-stack | : ase
L

|
:
|
§egment selectors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

33/35

Summary

Virtual address space: provide a process with a view of a private address space.

@ Transparent: processes should be e Emulator - two slow.

unaware of virtualization. @ Static relocation - not flexible.

@ Protection: processes should not be
able to interfere with each other.

@ Dynamic relocation:
e base and bound - simple to
o Efficiency: execution should be as implement

close to real execution as possible. e segmentation - more flexible
e problems: fragmentation, sharing

of code
Cliffhanger - paging, the solution.

35/35

Linux and segmentation

@ The segments descriptors of code, data and stack all have base address set
to 0x0 and limit to Oxffffffff i.e. they all referre to the same 4 Gibyte
linear address space.

@ In x86_64 long mode (64 bit mode) Intel removed some support for
segments and enforce that these segments are set to 0x0 and Oxff..ff.

@ Segmentation is still used to refere to memory that belongs to a specific
core or to thread specific memory.

34/35

