
Memory management

Johan Montelius

KTH

2021

1 / 27

virtual memory and segmentation

OS

2 / 27

virtual memory and segmentation

OS

code data heap stack

2 / 27

virtual memory and segmentation

OS

code data heap stack

code

2 / 27

virtual memory and segmentation

OS

code data heap stack

code data

2 / 27

virtual memory and segmentation

OS

code data heap stack

code data heap stack

2 / 27

virtual memory and segmentation

OS

code data heap stack

code data heap stack

code data heap stack

2 / 27

virtual memory and segmentation

OS

code data heap stack

code data heap stack

code data heap stack

code data heap stack

2 / 27

virtual memory and segmentation

OS

code data heap stack

code data heap stack

code data heap stack

code data heap stack

2 / 27

the process view

code data

How do we obtain more memory for the heap data structures?

3 / 27

the process view

code data

How do we obtain more memory for the heap data structures?

3 / 27

the process view

code data heap

How do we obtain more memory for the heap data structures?

3 / 27

the process view

code data heap

How do we obtain more memory for the heap data structures?

3 / 27

the process view

code data heap stack

How do we obtain more memory for the heap data structures?

3 / 27

the process view

code data heap stack

How do we obtain more memory for the heap data structures?

3 / 27

Linux system call

include <unistd .h>

int brk(void *addr);
void *sbrk(intptr_t incr);

brk() and sbrk() change the location of the program
break, which defines the end of the process’s heap
segment

brk() sets the end of the heap segment to the value
specified by addr

sbrk() increments the program’s heap space by
increment bytes. It returns the previous program
break.

Calling sbrk() with an increment of 0 can be used
to find the current location of the program break.

4 / 27

Linux system call

include <unistd .h>

int brk(void *addr);
void *sbrk(intptr_t incr);

brk() and sbrk() change the location of the program
break, which defines the end of the process’s heap
segment

brk() sets the end of the heap segment to the value
specified by addr

sbrk() increments the program’s heap space by
increment bytes. It returns the previous program
break.

Calling sbrk() with an increment of 0 can be used
to find the current location of the program break.

4 / 27

Linux system call

include <unistd .h>

int brk(void *addr);
void *sbrk(intptr_t incr);

brk() and sbrk() change the location of the program
break, which defines the end of the process’s heap
segment

brk() sets the end of the heap segment to the value
specified by addr

sbrk() increments the program’s heap space by
increment bytes. It returns the previous program
break.

Calling sbrk() with an increment of 0 can be used
to find the current location of the program break.

4 / 27

Linux system call

include <unistd .h>

int brk(void *addr);
void *sbrk(intptr_t incr);

brk() and sbrk() change the location of the program
break, which defines the end of the process’s heap
segment

brk() sets the end of the heap segment to the value
specified by addr

sbrk() increments the program’s heap space by
increment bytes. It returns the previous program
break.

Calling sbrk() with an increment of 0 can be used
to find the current location of the program break.

4 / 27

C program - not the way to do it

include <stdlib .h>
include <unistd .h>

int * allocate_array_please (int size) {

return (int *) sbrk(size * sizeof (int));
}

5 / 27

a growing heap

brk

How do we reuse allocated memory?

6 / 27

a growing heap

brk

How do we reuse allocated memory?

6 / 27

a growing heap

brk

How do we reuse allocated memory?

6 / 27

a growing heap

brk

How do we reuse allocated memory?

6 / 27

a growing heap

brk

How do we reuse allocated memory?

6 / 27

a growing heap

brk

How do we reuse allocated memory?

6 / 27

a growing heap

brk

How do we reuse allocated memory?

6 / 27

a growing heap

brk

free

How do we reuse allocated memory?

6 / 27

a growing heap

brk

free

How do we reuse allocated memory?

6 / 27

C program

include <stdlib .h>

int global = 42;

int main(int argc , char *argv []) {

if(argc < 2) return -1;

int n = atoi(argv [1]);

int on_stack [5] = {1 ,2 ,3 ,4 ,5};

int * on_heap = malloc (sizeof (int)*n);

:

}

7 / 27

The POSIX API

include <stdlib .h>

void * malloc (size_t size);
void free(void *ptr);

The malloc() function allocates size bytes and
returns a pointer to the allocated memory. The
memory is not initialized.

If size is 0, then malloc() returns either NULL, or a
unique pointer value that can later be successfully
passed to free().

The free() function frees the memory space pointed
to by ptr, which must have been returned by a
previous call to malloc(), ..

:

8 / 27

The POSIX API

include <stdlib .h>

void * malloc (size_t size);
void free(void *ptr);

The malloc() function allocates size bytes and
returns a pointer to the allocated memory. The
memory is not initialized.

If size is 0, then malloc() returns either NULL, or a
unique pointer value that can later be successfully
passed to free().

The free() function frees the memory space pointed
to by ptr, which must have been returned by a
previous call to malloc(), ..

:

8 / 27

The POSIX API

include <stdlib .h>

void * malloc (size_t size);
void free(void *ptr);

The malloc() function allocates size bytes and
returns a pointer to the allocated memory. The
memory is not initialized.

If size is 0, then malloc() returns either NULL, or a
unique pointer value that can later be successfully
passed to free().

The free() function frees the memory space pointed
to by ptr, which must have been returned by a
previous call to malloc(), ..

:

8 / 27

The POSIX API

include <stdlib .h>

void * malloc (size_t size);
void free(void *ptr);

The malloc() function allocates size bytes and
returns a pointer to the allocated memory. The
memory is not initialized.

If size is 0, then malloc() returns either NULL, or a
unique pointer value that can later be successfully
passed to free().

The free() function frees the memory space pointed
to by ptr, which must have been returned by a
previous call to malloc(), ..

:

8 / 27

The operating system

Operating system

Application layer

Library is often just a wrapper for the system call - sometimes more complex.

9 / 27

The operating system

Operating system

Application layeruser
process

Library is often just a wrapper for the system call - sometimes more complex.

9 / 27

The operating system

Operating system

Application layeruser
process
code

Library is often just a wrapper for the system call - sometimes more complex.

9 / 27

The operating system

Operating system

Application layeruser
process
code

library

kernel

Library is often just a wrapper for the system call - sometimes more complex.

9 / 27

The operating system

Operating system

Application layeruser
process
code

library

kernel

Systems calls (trap to kernel space)

Library is often just a wrapper for the system call - sometimes more complex.

9 / 27

The operating system

Operating system

Application layeruser
process
code

library

kernel

Systems calls (trap to kernel space)

Operating system API (POSIX)

Library is often just a wrapper for the system call - sometimes more complex.

9 / 27

The operating system

Operating system

Application layeruser
process
code

library

kernel

Systems calls (trap to kernel space)

Operating system API (POSIX)

Library is often just a wrapper for the system call - sometimes more complex.

9 / 27

Memory hierarchy

User space program

10 / 27

Memory hierarchy

User space program

malloc() / free()Library routines

10 / 27

Memory hierarchy

User space program

malloc() / free()Library routines

sbrk() / brk()System calls

10 / 27

Memory hierarchy

User space program

malloc() / free()Library routines

sbrk() / brk()System calls

char a[10] structs person {int age; char name[20]}

10 / 27

Memory hierarchy

User space program

malloc() / free()Library routines

sbrk() / brk()System calls

char a[10] structs person {int age; char name[20]}

10 / 27

Memory hierarchy

User space program

malloc() / free()Library routines

sbrk() / brk()System calls

char a[10] structs person {int age; char name[20]}

10 / 27

Memory hierarchy

User space program

malloc() / free()Library routines

sbrk() / brk()System calls

char a[10] structs person {int age; char name[20]}

10 / 27

Memory hierarchy

User space program

malloc() / free()Library routines

sbrk() / brk()System calls

char a[10] structs person {int age; char name[20]}

10 / 27

Memory hierarchy

User space program

malloc() / free()Library routines

sbrk() / brk()System calls

char a[10] structs person {int age; char name[20]}

10 / 27

Memory hierarchy

User space program

malloc() / free()Library routines

sbrk() / brk()System calls

char a[10] structs person {int age; char name[20]}

10 / 27

Memory hierarchy

User space program

malloc() / free()Library routines

sbrk() / brk()System calls

char a[10] structs person {int age; char name[20]}

heap

10 / 27

Memory management

If we would not have to reuse freed memory areas - management would be simple.

Calling sbrk() is costly i.e. better to do a few large allocations and then do
several smaller malloc() operations.
Keep track of freed memory, to reuse it in following malloc().

11 / 27

Memory management

If we would not have to reuse freed memory areas - management would be simple.
Calling sbrk() is costly i.e. better to do a few large allocations and then do
several smaller malloc() operations.

Keep track of freed memory, to reuse it in following malloc().

11 / 27

Memory management

If we would not have to reuse freed memory areas - management would be simple.
Calling sbrk() is costly i.e. better to do a few large allocations and then do
several smaller malloc() operations.
Keep track of freed memory, to reuse it in following malloc().

11 / 27

Memory management

If we would not have to reuse freed memory areas - management would be simple.
Calling sbrk() is costly i.e. better to do a few large allocations and then do
several smaller malloc() operations.
Keep track of freed memory, to reuse it in following malloc().

11 / 27

A list of free blocks

Assume each free block holds a header containing: the size and a pointer to the next
block.

typefdef struct __node_t {
int size;
struct __node_t *next;

}

12 / 27

A list of free blocks

Assume each free block holds a header containing: the size and a pointer to the next
block.

typefdef struct __node_t {
int size;
struct __node_t *next;

}

free

12 / 27

A list of free blocks

Assume each free block holds a header containing: the size and a pointer to the next
block.

typefdef struct __node_t {
int size;
struct __node_t *next;

}

free

12 / 27

A list of free blocks

Assume each free block holds a header containing: the size and a pointer to the next
block.

typefdef struct __node_t {
int size;
struct __node_t *next;

}

free

12 / 27

A list of free blocks

Assume each free block holds a header containing: the size and a pointer to the next
block.

typefdef struct __node_t {
int size;
struct __node_t *next;

}

free

12 / 27

A list of free blocks

Assume each free block holds a header containing: the size and a pointer to the next
block.

typefdef struct __node_t {
int size;
struct __node_t *next;

}

free

12 / 27

pick a suitable block

When we malloc we first search the free-list for a suitable block.

char *buf = malloc(20)

free

13 / 27

pick a suitable block

When we malloc we first search the free-list for a suitable block.

char *buf = malloc(20)

free

buf

13 / 27

pick a suitable block

When we malloc we first search the free-list for a suitable block.

char *buf = malloc(20)

free

buf

13 / 27

pick a suitable block

When we malloc we first search the free-list for a suitable block.

char *buf = malloc(20)

free

buf

13 / 27

return a block

How do we return a block?

free(this)

free

What’s the problem?

14 / 27

return a block

How do we return a block?

free(this)

free

free(this)

What’s the problem?

14 / 27

return a block

How do we return a block?

free(this)

free

free(this)

What’s the problem?

14 / 27

return a block

How do we return a block?

free(this)

free

What’s the problem?

14 / 27

return a block

How do we return a block?

free(this)

free

What’s the problem?

14 / 27

return a block

How do we return a block?

free(this)

free

What’s the problem?

14 / 27

hidden information

:
char *buf = malloc (128);

:

free(buf);
:

buf free

128
next

15 / 27

hidden information

:
char *buf = malloc (128);

:

free(buf);
:

buf free

128
next

128 bytes

15 / 27

hidden information

:
char *buf = malloc (128);

:

free(buf);
:

buf free

128
next

128 bytes

15 / 27

Malloc - find a suitable block and split it.

Which block shall we pick?

free

16 / 27

Malloc - find a suitable block and split it.

Which block shall we pick?

free

16 / 27

Malloc - find a suitable block and split it.

Which block shall we pick?

free

16 / 27

Malloc - find a suitable block and split it.

Which block shall we pick?

free

16 / 27

Malloc - find a suitable block and split it.

Which block shall we pick?

free

16 / 27

Coalescing - merging free blocks

When we return a block we need to merge
it with adjacent free blocks - if any.

free

17 / 27

Coalescing - merging free blocks

When we return a block we need to merge
it with adjacent free blocks - if any.

free

free(this)

17 / 27

Coalescing - merging free blocks

When we return a block we need to merge
it with adjacent free blocks - if any.

free

free(this)

17 / 27

Coalescing - merging free blocks

When we return a block we need to merge
it with adjacent free blocks - if any.

free

17 / 27

Coalescing - merging free blocks

When we return a block we need to merge
it with adjacent free blocks - if any.

free

17 / 27

Coalescing - merging free blocks

When we return a block we need to merge
it with adjacent free blocks - if any.

free

17 / 27

Free list strategies

Best fit: the block that minimize the left over.

Worst fit: the block that maximize the left over.
First fit: pick the first one.

You should know the pros and cons of these strategies.

18 / 27

Free list strategies

Best fit: the block that minimize the left over.
Worst fit: the block that maximize the left over.

First fit: pick the first one.

You should know the pros and cons of these strategies.

18 / 27

Free list strategies

Best fit: the block that minimize the left over.
Worst fit: the block that maximize the left over.
First fit: pick the first one.

You should know the pros and cons of these strategies.

18 / 27

Free list strategies

Best fit: the block that minimize the left over.
Worst fit: the block that maximize the left over.
First fit: pick the first one.

You should know the pros and cons of these strategies.

18 / 27

Segregated lists

Idéa - keep separate lists of blocks of different size.

Assume we keep lists for blocks of: 8, 16, 32, 64 ... bytes.
Easy to serve and return blocks of given size.
What should we do if we are asked for block of size 24?
What sizes should we choose, what needs to be considered?

We can build our own allocator that is optimized for a given application.

19 / 27

Segregated lists

Idéa - keep separate lists of blocks of different size.

Assume we keep lists for blocks of: 8, 16, 32, 64 ... bytes.

Easy to serve and return blocks of given size.
What should we do if we are asked for block of size 24?
What sizes should we choose, what needs to be considered?

We can build our own allocator that is optimized for a given application.

19 / 27

Segregated lists

Idéa - keep separate lists of blocks of different size.

Assume we keep lists for blocks of: 8, 16, 32, 64 ... bytes.
Easy to serve and return blocks of given size.

What should we do if we are asked for block of size 24?
What sizes should we choose, what needs to be considered?

We can build our own allocator that is optimized for a given application.

19 / 27

Segregated lists

Idéa - keep separate lists of blocks of different size.

Assume we keep lists for blocks of: 8, 16, 32, 64 ... bytes.
Easy to serve and return blocks of given size.
What should we do if we are asked for block of size 24?

What sizes should we choose, what needs to be considered?

We can build our own allocator that is optimized for a given application.

19 / 27

Segregated lists

Idéa - keep separate lists of blocks of different size.

Assume we keep lists for blocks of: 8, 16, 32, 64 ... bytes.
Easy to serve and return blocks of given size.
What should we do if we are asked for block of size 24?
What sizes should we choose, what needs to be considered?

We can build our own allocator that is optimized for a given application.

19 / 27

Segregated lists

Idéa - keep separate lists of blocks of different size.

Assume we keep lists for blocks of: 8, 16, 32, 64 ... bytes.
Easy to serve and return blocks of given size.
What should we do if we are asked for block of size 24?
What sizes should we choose, what needs to be considered?

We can build our own allocator that is optimized for a given application.

19 / 27

malloc in GNU/Linux

The C standard library glibc used in most GNU/Linux distributions use a memory
allocator called ptmalloc3 (pthread malloc).

Multithreaded, each thread has a separate heap.

Uses multiple bins (free lists) to keep chunks of different size.

Will coalesce adjacent chunks.

20 / 27

malloc in GNU/Linux

The C standard library glibc used in most GNU/Linux distributions use a memory
allocator called ptmalloc3 (pthread malloc).

Multithreaded, each thread has a separate heap.

Uses multiple bins (free lists) to keep chunks of different size.

Will coalesce adjacent chunks.

20 / 27

malloc in GNU/Linux

The C standard library glibc used in most GNU/Linux distributions use a memory
allocator called ptmalloc3 (pthread malloc).

Multithreaded, each thread has a separate heap.

Uses multiple bins (free lists) to keep chunks of different size.

Will coalesce adjacent chunks.

20 / 27

malloc in GNU/Linux

The C standard library glibc used in most GNU/Linux distributions use a memory
allocator called ptmalloc3 (pthread malloc).

Multithreaded, each thread has a separate heap.

Uses multiple bins (free lists) to keep chunks of different size.

Will coalesce adjacent chunks.

20 / 27

Buddy Allocation

If we should allow blocks to be divided then we should also provide efficient coalescing.

Assume total memory 128Kibyte, smallest allocated frame 4Kibyte

21 / 27

Buddy Allocation

If we should allow blocks to be divided then we should also provide efficient coalescing.

Assume total memory 128Kibyte, smallest allocated frame 4Kibyte

4

21 / 27

Buddy Allocation

If we should allow blocks to be divided then we should also provide efficient coalescing.

Assume total memory 128Kibyte, smallest allocated frame 4Kibyte

4

8

21 / 27

Buddy Allocation

If we should allow blocks to be divided then we should also provide efficient coalescing.

Assume total memory 128Kibyte, smallest allocated frame 4Kibyte

4

8
16

21 / 27

Buddy Allocation

If we should allow blocks to be divided then we should also provide efficient coalescing.

Assume total memory 128Kibyte, smallest allocated frame 4Kibyte

4

8
16

32

21 / 27

Buddy Allocation

If we should allow blocks to be divided then we should also provide efficient coalescing.

Assume total memory 128Kibyte, smallest allocated frame 4Kibyte

4

8
16

32
64

21 / 27

Find your buddy

Assume we number our 32 frames from 0b00000 to 0b11111.

Who’s the buddy of:

22 / 27

Find your buddy

Assume we number our 32 frames from 0b00000 to 0b11111.

Who’s the buddy of:

4K at 0b00011

22 / 27

Find your buddy

Assume we number our 32 frames from 0b00000 to 0b11111.

Who’s the buddy of:

4K at 0b00011

8K at 0b01000

22 / 27

Find your buddy

Assume we number our 32 frames from 0b00000 to 0b11111.

Who’s the buddy of:

4K at 0b00011

8K at 0b01000

16K at 0b10100

22 / 27

Buddy pros and cons

Pros:

Efficient allocation and deallocations
of frames.
Coalescing efficient, O(lg(n))
Handles external fragmentation well.

Cons:
Internal fragmentation - if we need a
frame of 9 blocks we get 16!

Linux uses Buddy allocations when managing physical memory - check
/proc/buddyinfo.

23 / 27

Buddy pros and cons

Pros:
Efficient allocation and deallocations
of frames.

Coalescing efficient, O(lg(n))
Handles external fragmentation well.

Cons:
Internal fragmentation - if we need a
frame of 9 blocks we get 16!

Linux uses Buddy allocations when managing physical memory - check
/proc/buddyinfo.

23 / 27

Buddy pros and cons

Pros:
Efficient allocation and deallocations
of frames.
Coalescing efficient, O(lg(n))

Handles external fragmentation well.

Cons:
Internal fragmentation - if we need a
frame of 9 blocks we get 16!

Linux uses Buddy allocations when managing physical memory - check
/proc/buddyinfo.

23 / 27

Buddy pros and cons

Pros:
Efficient allocation and deallocations
of frames.
Coalescing efficient, O(lg(n))
Handles external fragmentation well.

Cons:
Internal fragmentation - if we need a
frame of 9 blocks we get 16!

Linux uses Buddy allocations when managing physical memory - check
/proc/buddyinfo.

23 / 27

Buddy pros and cons

Pros:
Efficient allocation and deallocations
of frames.
Coalescing efficient, O(lg(n))
Handles external fragmentation well.

Cons:

Internal fragmentation - if we need a
frame of 9 blocks we get 16!

Linux uses Buddy allocations when managing physical memory - check
/proc/buddyinfo.

23 / 27

Buddy pros and cons

Pros:
Efficient allocation and deallocations
of frames.
Coalescing efficient, O(lg(n))
Handles external fragmentation well.

Cons:
Internal fragmentation - if we need a
frame of 9 blocks we get 16!

Linux uses Buddy allocations when managing physical memory - check
/proc/buddyinfo.

23 / 27

Buddy pros and cons

Pros:
Efficient allocation and deallocations
of frames.
Coalescing efficient, O(lg(n))
Handles external fragmentation well.

Cons:
Internal fragmentation - if we need a
frame of 9 blocks we get 16!

Linux uses Buddy allocations when managing physical memory - check
/proc/buddyinfo.

23 / 27

Buddy pros and cons

Pros:
Efficient allocation and deallocations
of frames.
Coalescing efficient, O(lg(n))
Handles external fragmentation well.

Cons:
Internal fragmentation - if we need a
frame of 9 blocks we get 16!

Linux uses Buddy allocations when managing physical memory - check
/proc/buddyinfo.

23 / 27

mmap - memory map

include <sys/mman.h>

void *mmap(void *addr ,
size_t length ,
int prot ,
int flags ,
int fd ,
off_t offset);

mmap() creates a new mapping in the virtual
address space of the calling process.

The length argument specifies the length of the
mapping.

If addr is NULL, then the kernel chooses the
address at which to create the mapping;

The prot argument describes the desired memory
protection of the mapping..

flags, fd and offset for mapping of file in memory

Originally from 4.2BSD, default in OSX where malloc() uses mmap() to allocate
memory.

24 / 27

mmap - memory map

include <sys/mman.h>

void *mmap(void *addr ,
size_t length ,
int prot ,
int flags ,
int fd ,
off_t offset);

mmap() creates a new mapping in the virtual
address space of the calling process.

The length argument specifies the length of the
mapping.

If addr is NULL, then the kernel chooses the
address at which to create the mapping;

The prot argument describes the desired memory
protection of the mapping..

flags, fd and offset for mapping of file in memory

Originally from 4.2BSD, default in OSX where malloc() uses mmap() to allocate
memory.

24 / 27

mmap - memory map

include <sys/mman.h>

void *mmap(void *addr ,
size_t length ,
int prot ,
int flags ,
int fd ,
off_t offset);

mmap() creates a new mapping in the virtual
address space of the calling process.

The length argument specifies the length of the
mapping.

If addr is NULL, then the kernel chooses the
address at which to create the mapping;

The prot argument describes the desired memory
protection of the mapping..

flags, fd and offset for mapping of file in memory

Originally from 4.2BSD, default in OSX where malloc() uses mmap() to allocate
memory.

24 / 27

mmap - memory map

include <sys/mman.h>

void *mmap(void *addr ,
size_t length ,
int prot ,
int flags ,
int fd ,
off_t offset);

mmap() creates a new mapping in the virtual
address space of the calling process.

The length argument specifies the length of the
mapping.

If addr is NULL, then the kernel chooses the
address at which to create the mapping;

The prot argument describes the desired memory
protection of the mapping..

flags, fd and offset for mapping of file in memory

Originally from 4.2BSD, default in OSX where malloc() uses mmap() to allocate
memory.

24 / 27

mmap - memory map

include <sys/mman.h>

void *mmap(void *addr ,
size_t length ,
int prot ,
int flags ,
int fd ,
off_t offset);

mmap() creates a new mapping in the virtual
address space of the calling process.

The length argument specifies the length of the
mapping.

If addr is NULL, then the kernel chooses the
address at which to create the mapping;

The prot argument describes the desired memory
protection of the mapping..

flags, fd and offset for mapping of file in memory

Originally from 4.2BSD, default in OSX where malloc() uses mmap() to allocate
memory.

24 / 27

mmap - memory map

include <sys/mman.h>

void *mmap(void *addr ,
size_t length ,
int prot ,
int flags ,
int fd ,
off_t offset);

mmap() creates a new mapping in the virtual
address space of the calling process.

The length argument specifies the length of the
mapping.

If addr is NULL, then the kernel chooses the
address at which to create the mapping;

The prot argument describes the desired memory
protection of the mapping..

flags, fd and offset for mapping of file in memory

Originally from 4.2BSD, default in OSX where malloc() uses mmap() to allocate
memory.

24 / 27

sbrk() vs mmap()

brk() and sbrk()

easy to extend the process heap

not easy to hand back allocated
memory
only one “heap”
not part of POSIX

mmap()

POSIX standard
easy to allocate several large areas
easy to hand back allocated memory
ability to map a file in memory

25 / 27

sbrk() vs mmap()

brk() and sbrk()

easy to extend the process heap
not easy to hand back allocated
memory

only one “heap”
not part of POSIX

mmap()

POSIX standard
easy to allocate several large areas
easy to hand back allocated memory
ability to map a file in memory

25 / 27

sbrk() vs mmap()

brk() and sbrk()

easy to extend the process heap
not easy to hand back allocated
memory
only one “heap”

not part of POSIX

mmap()

POSIX standard
easy to allocate several large areas
easy to hand back allocated memory
ability to map a file in memory

25 / 27

sbrk() vs mmap()

brk() and sbrk()

easy to extend the process heap
not easy to hand back allocated
memory
only one “heap”
not part of POSIX

mmap()

POSIX standard

easy to allocate several large areas
easy to hand back allocated memory
ability to map a file in memory

25 / 27

sbrk() vs mmap()

brk() and sbrk()

easy to extend the process heap
not easy to hand back allocated
memory
only one “heap”
not part of POSIX

mmap()

POSIX standard
easy to allocate several large areas

easy to hand back allocated memory
ability to map a file in memory

25 / 27

sbrk() vs mmap()

brk() and sbrk()

easy to extend the process heap
not easy to hand back allocated
memory
only one “heap”
not part of POSIX

mmap()

POSIX standard
easy to allocate several large areas
easy to hand back allocated memory
ability to map a file in memory

25 / 27

Programmers point of view

Explicit memory management: the programmer needs to explicitly free objects.

Used in C, C++ and most system level programming languages.
Pros: efficient usage of memory.
Cons: hard to find bugs when you don’t do it right.

Implicit memory management: memory is freed by the system.
Managed by the runtime system i.e. a garbage collector (Java, Erlang, Python, ..)
or by the compiler (Mercury, Rust ...).
Pros: much simpler and/or safer.
Cons: could result in runtime overhead and/or lack of control.

26 / 27

Programmers point of view

Explicit memory management: the programmer needs to explicitly free objects.
Used in C, C++ and most system level programming languages.

Pros: efficient usage of memory.
Cons: hard to find bugs when you don’t do it right.

Implicit memory management: memory is freed by the system.
Managed by the runtime system i.e. a garbage collector (Java, Erlang, Python, ..)
or by the compiler (Mercury, Rust ...).
Pros: much simpler and/or safer.
Cons: could result in runtime overhead and/or lack of control.

26 / 27

Programmers point of view

Explicit memory management: the programmer needs to explicitly free objects.
Used in C, C++ and most system level programming languages.
Pros: efficient usage of memory.

Cons: hard to find bugs when you don’t do it right.
Implicit memory management: memory is freed by the system.

Managed by the runtime system i.e. a garbage collector (Java, Erlang, Python, ..)
or by the compiler (Mercury, Rust ...).
Pros: much simpler and/or safer.
Cons: could result in runtime overhead and/or lack of control.

26 / 27

Programmers point of view

Explicit memory management: the programmer needs to explicitly free objects.
Used in C, C++ and most system level programming languages.
Pros: efficient usage of memory.
Cons: hard to find bugs when you don’t do it right.

Implicit memory management: memory is freed by the system.
Managed by the runtime system i.e. a garbage collector (Java, Erlang, Python, ..)
or by the compiler (Mercury, Rust ...).
Pros: much simpler and/or safer.
Cons: could result in runtime overhead and/or lack of control.

26 / 27

Programmers point of view

Explicit memory management: the programmer needs to explicitly free objects.
Used in C, C++ and most system level programming languages.
Pros: efficient usage of memory.
Cons: hard to find bugs when you don’t do it right.

Implicit memory management: memory is freed by the system.

Managed by the runtime system i.e. a garbage collector (Java, Erlang, Python, ..)
or by the compiler (Mercury, Rust ...).
Pros: much simpler and/or safer.
Cons: could result in runtime overhead and/or lack of control.

26 / 27

Programmers point of view

Explicit memory management: the programmer needs to explicitly free objects.
Used in C, C++ and most system level programming languages.
Pros: efficient usage of memory.
Cons: hard to find bugs when you don’t do it right.

Implicit memory management: memory is freed by the system.
Managed by the runtime system i.e. a garbage collector (Java, Erlang, Python, ..)
or by the compiler (Mercury, Rust ...).

Pros: much simpler and/or safer.
Cons: could result in runtime overhead and/or lack of control.

26 / 27

Programmers point of view

Explicit memory management: the programmer needs to explicitly free objects.
Used in C, C++ and most system level programming languages.
Pros: efficient usage of memory.
Cons: hard to find bugs when you don’t do it right.

Implicit memory management: memory is freed by the system.
Managed by the runtime system i.e. a garbage collector (Java, Erlang, Python, ..)
or by the compiler (Mercury, Rust ...).
Pros: much simpler and/or safer.

Cons: could result in runtime overhead and/or lack of control.

26 / 27

Programmers point of view

Explicit memory management: the programmer needs to explicitly free objects.
Used in C, C++ and most system level programming languages.
Pros: efficient usage of memory.
Cons: hard to find bugs when you don’t do it right.

Implicit memory management: memory is freed by the system.
Managed by the runtime system i.e. a garbage collector (Java, Erlang, Python, ..)
or by the compiler (Mercury, Rust ...).
Pros: much simpler and/or safer.
Cons: could result in runtime overhead and/or lack of control.

26 / 27

Programmers point of view

Explicit memory management: the programmer needs to explicitly free objects.
Used in C, C++ and most system level programming languages.
Pros: efficient usage of memory.
Cons: hard to find bugs when you don’t do it right.

Implicit memory management: memory is freed by the system.
Managed by the runtime system i.e. a garbage collector (Java, Erlang, Python, ..)
or by the compiler (Mercury, Rust ...).
Pros: much simpler and/or safer.
Cons: could result in runtime overhead and/or lack of control.

26 / 27

Summary

user process API: malloc() and free()

system calls: sbrk() or mmap()
how to find suitable memory block.
how to free memory blocks for efficient reuse
coalescing smaller blocks

27 / 27

Summary

user process API: malloc() and free()
system calls: sbrk() or mmap()

how to find suitable memory block.
how to free memory blocks for efficient reuse
coalescing smaller blocks

27 / 27

Summary

user process API: malloc() and free()
system calls: sbrk() or mmap()
how to find suitable memory block.

how to free memory blocks for efficient reuse
coalescing smaller blocks

27 / 27

Summary

user process API: malloc() and free()
system calls: sbrk() or mmap()
how to find suitable memory block.
how to free memory blocks for efficient reuse

coalescing smaller blocks

27 / 27

Summary

user process API: malloc() and free()
system calls: sbrk() or mmap()
how to find suitable memory block.
how to free memory blocks for efficient reuse
coalescing smaller blocks

27 / 27

