Locks and semaphores

Johan Montelius

KTH

2021

1/40

recap, what's the problem

#include <pthread.h>
volatile int count = O0;

void *hello(void *arg) {
for(int i = 0; i < 10; i++) {
count ++;
}
¥

int main() {
pthread_t pl, p2;

pthread_create (&pl, NULL, hello, NULL);
pthread_create (&p2, NULL, hello, NULL);

2/40

Peterson’s algorithm

int request[2] = {0,0};
int turn = O;

int lock(int id) {
request [id]

int other = 1-
turn = other;

1;
id;

while (request [other] == 1 && turn == other) {}; // spin

return 1;

3

void release(int id) {
request [id] = 0;
}

3/40

Total Store Order

P1 P2

4/40

Total Store Order

P1 P2

4/40

Total Store Order

P1 P2

4/40

Total Store Order

P1

P2

4/40

Total Store Order

P1

P2

4/40

Total Store Order

P1

P2

4/40

atomic memory operations

5/40

atomic memory operations

All CPU:s provide several versions of atomic operations that both read and write to a
memory element in one atomic operation.

@ test-and-set: swap i.e. read and write to a memory location, the simplest
primitive

5/40

atomic memory operations

All CPU:s provide several versions of atomic operations that both read and write to a
memory element in one atomic operation.

@ test-and-set: swap i.e. read and write to a memory location, the simplest
primitive

@ fetch-and-add/and/xor/... : update the value with a given operation, more
flexible

5/40

atomic memory operations

All CPU:s provide several versions of atomic operations that both read and write to a
memory element in one atomic operation.

@ test-and-set: swap i.e. read and write to a memory location, the simplest
primitive

@ fetch-and-add/and/xor/... : update the value with a given operation, more
flexible

@ compare-and-swap : if the memory location contains a specific value then swap

5/40

try to lock by swap

int try(int =*lock) {
return __sync_val_compare_and_swap (lock, 0, 1);

3

6/40

try to lock by swap

int try(int =*lock) {

return __sync_val_compare_and_swap (lock, 0, 1);
}
pushq %rbp
movq %rsp, hrbp
movq %rdi, -8(%rbp)
movq -8(%rbp), ‘%rdx
movl $0, Yeax
movl $1, %ecx
lock cmpxchgl hecx, (fhrdx)
popq %rbp
ret

6/40

try to lock by swap

int try(int =*lock) {

return __sync_val_compare_and_swap (lock, 0, 1);
}
pushq %rbp
movq %rsp, hrbp
movq %rdi, -8(%rbp)
movq -8(%rbp), ‘%rdx
movl $0, Yeax
movl $1, %ecx
lock cmpxchgl hecx, (fhrdx)
popq %rbp
ret

This is using GCC extensions to C, similar extensions available in all compilers.

6/40

int lock(int *lock) {
while (try(lock) !'= 0) {}

return 1;

3

7/40

int lock(int *lock) {
while (try(lock) !'= 0) {}

return 1;

3

void release(int *lock) {
*lock = 0;
+

7/40

finally - we're in control

int global = O0;
int count = 0;

void *hello(void *name) {
for(int 1 = 0; i < 10; i++) {
lock (&global);
count ++;
release (&global);
}

try using taskset -c 1 ./spin 10000

8/40

9/40

HAPPY-GO-LUCKY

We need to talk to the operating system.

10/40

We need to talk to the operating system.

void lock(int *lock) {
while (try(lock) != 0) {

sched_yield (); // in Linuzx
}

10/40

For how long should we sleep?

11/40

For how long should we sleep?

11/40

For how long should we sleep?

We would like to be woken up as the lock is released - before you go-go.

11/40

a detour in Sun Solaris
V¢
> %

soLaris

void lock(lock_t *m) {
while (try(m->guard) !'= 0) {};

if (m->flag == 0) {
m->flag = 1;
m->guard = 0;
} else {
queue_add (m->queue, gettid());
m->guard = O;
park ();

12/40

a detour in Sun Solaris
V¢
> %

soLaris

void lock(lock_t *m) { void unlock(lock_t =*m) {
while (try (m->guard) != 0) {}; while (try (m->guard) != 0) {};
if (m->flag == 0) { if (empty (m->queue)) {
m->flag = 1; m->flag = 0;
m->guard = 0; } else {
} else { unpark (dequeue (m->queue)) ;
queue_add (m->queue, gettid()); }
m->guard = O; m->guard = 0;
park () ; }

12/40

It's not easy to to get it right.
/¥ m->flag == 1 */

queue_add (m->queue, gettid());
m->guard = O;

park () ;

// when I wake up the flag is set

if (empty (m->queue)) {
m->flag = 0;

} else {
// don’t reset the flag
unpark (dequeue (m->queue)) ;

}

13/40

It's not easy to to get it right.

/¥ m->flag == 1 */

queue_add (m->queue, gettid());
setpark () ;
// if somome unparks now my park() is a mnoop
m->guard = 0;
park O);
if (empty (m->queue)) {
m->flag = 0;
} else {
// don’t reset the flag
unpark (dequeue (m->queue)) ;

}

13/40

14 /40

Introducing futex: fast user space mutex.

14 /40

Introducing futex: fast user space mutex.

o futex_wait(mutex, val) : suspend on the mutex if its equal to val.

o futex_wake(mutex) : wake one of the treads suspended on the mutex

14 /40

Introducing futex: fast user space mutex.

o futex_wait(mutex, val) : suspend on the mutex if its equal to val.

o futex_wake(mutex) : wake one of the treads suspended on the mutex

In GCC you have to call them using a syscall()

14 /40

a futex lock

void lock(volatile int *lock) {
while(try(lock) != 0) {
// time to sleep
futex_wait (lock, 1);
}

15 /40

a futex lock

void lock(volatile int *lock) { void unlock(volatile int *lock) {
while(try(lock) != 0) { *lock = 0;
// time to sleep ... futex_wake (lock);
futex_wait (lock, 1); }
}
}

15 /40

a futex lock

void lock(volatile int *lock) { void unlock(volatile int *lock) {
while(try(lock) != 0) { *lock = 0;
// time to sleep ... futex_wake (lock);
futex_wait (lock, 1); }
}
}

Not very efficient - we want to avoid calling futex_wake () if no one is waiting.

15 /40

pthread mutex

Using Linux futex or Sun park/unpark directly is error prone and not very portable.

16 /40

pthread mutex

Using Linux futex or Sun park/unpark directly is error prone and not very portable.

It's better to use the pthread library API, probably more efficient and definitely less
problems.

16 /40

pthread mutex

Using Linux futex or Sun park/unpark directly is error prone and not very portable.

It's better to use the pthread library API, probably more efficient and definitely less
problems.

Introducing pthread mutex locks:

@ pthread_mutex_t : structure that is the mutex

16 /40

pthread mutex

Using Linux futex or Sun park/unpark directly is error prone and not very portable.

It's better to use the pthread library API, probably more efficient and definitely less
problems.

Introducing pthread mutex locks:
@ pthread_mutex_t : structure that is the mutex

@ pthread_mutex_init(pthread_mutex_t *mutex, ... *attr)

16 /40

pthread mutex

Using Linux futex or Sun park/unpark directly is error prone and not very portable.

It's better to use the pthread library API, probably more efficient and definitely less
problems.

Introducing pthread mutex locks:
@ pthread_mutex_t : structure that is the mutex
@ pthread_mutex_init(pthread_mutex_t *mutex, ... *attr)

@ pthread_mutex_destroy(pthread_mutex_t *mutex)

16 /40

pthread mutex

Using Linux futex or Sun park/unpark directly is error prone and not very portable.

It's better to use the pthread library API, probably more efficient and definitely less
problems.

Introducing pthread mutex locks:
@ pthread_mutex_t : structure that is the mutex
@ pthread_mutex_init(pthread_mutex_t *mutex, ... *attr)
@ pthread_mutex_destroy(pthread_mutex_t *mutex)

@ pthread_mutex_lock(pthread _mutex_t *mutex)

16 /40

pthread mutex

Using Linux futex or Sun park/unpark directly is error prone and not very portable.

It's better to use the pthread library API, probably more efficient and definitely less
problems.

Introducing pthread mutex locks:

pthread_mutex_t : structure that is the mutex

pthread_mutex_init(pthread_mutex_t *mutex, ... *attr)

°
@ pthread_mutex_destroy(pthread_mutex_t *mutex)
@ pthread_mutex_lock(pthread _mutex_t *mutex)

°

pthread_mutex_unlock(pthread _mutex_t *mutex)

16 /40

pthread mutex

Using Linux futex or Sun park/unpark directly is error prone and not very portable.

It's better to use the pthread library API, probably more efficient and definitely less
problems.

Introducing pthread mutex locks:

pthread_mutex_t : structure that is the mutex

pthread_mutex_init(pthread_mutex_t *mutex, ... *attr)

°
@ pthread_mutex_destroy(pthread_mutex_t *mutex)
@ pthread_mutex_lock(pthread _mutex_t *mutex)

°

pthread_mutex_unlock(pthread _mutex_t *mutex)

16 /40

pthread mutex

Using Linux futex or Sun park/unpark directly is error prone and not very portable.

It's better to use the pthread library API, probably more efficient and definitely less
problems.

Introducing pthread mutex locks:

pthread_mutex_t : structure that is the mutex

pthread_mutex_init(pthread_mutex_t *mutex, ... *attr)

°
@ pthread_mutex_destroy(pthread_mutex_t *mutex)
@ pthread_mutex_lock(pthread _mutex_t *mutex)

°

pthread_mutex_unlock(pthread _mutex_t *mutex)

The lock procedure is platform specific, normally implemented as a combination of
spinning and yield.

16 /40

What could go wrong?

17/40

What could go wrong?

@ Nothing works, will not even compile.

17/40

What could go wrong?

@ Nothing works, will not even compile.

@ Deadlock: the execution is stuck, no thread is making progress.

17/40

What could go wrong?

@ Nothing works, will not even compile.
@ Deadlock: the execution is stuck, no thread is making progress.

@ Livelock: we're moving around in circles, all threads think that they are doing
progress but we're stuck in a loop.

17/40

What could go wrong?

Nothing works, will not even compile.

Deadlock: the execution is stuck, no thread is making progress.

(]

Livelock: we're moving around in circles, all threads think that they are doing
progress but we're stuck in a loop.

Starvation: we're making progress but some threads are stuck waiting.

17/40

What could go wrong?

Nothing works, will not even compile.

Deadlock: the execution is stuck, no thread is making progress.

(]

Livelock: we're moving around in circles, all threads think that they are doing
progress but we're stuck in a loop.

Starvation: we're making progress but some threads are stuck waiting.

Unfairness: we're making progress but some threads are given more of the
resources.

17/40

Resources, priorities and scheduling

Assume we have a fixed priority scheduler, three processes with high (H), medium (M)
and low (L) priority and one critical resource.

H: [

M:

0 10 20 30 40 50 60 70 80 90 100 110 120

18/40

Resources, priorities and scheduling

Assume we have a fixed priority scheduler, three processes with high (H), medium (M)
and low (L) priority and one critical resource.

H: [
v NNG—_

0 10 20 30 40 50 60 70 80 90 100 110 120

18/40

Resources, priorities and scheduling

Assume we have a fixed priority scheduler, three processes with high (H), medium (M)
and low (L) priority and one critical resource.

H: [
v -
L []

0 10 20 30 40 50 60 70 80 90 100 110 120

18/40

Resources, priorities and scheduling

Assume we have a fixed priority scheduler, three processes with high (H), medium (M)
and low (L) priority and one critical resource.

H: [1]
v: R
L []

0 10 20 30 40 50 60 70 80 90 100 110 120

18/40

Resources, priorities and scheduling

Assume we have a fixed priority scheduler, three processes with high (H), medium (M)
and low (L) priority and one critical resource.

H []
v [
’ B B

0 10 20 30 40 50 60 70 80 90 100 110 120

18/40

Resources, priorities and scheduling

Assume we have a fixed priority scheduler, three processes with high (H), medium (M)
and low (L) priority and one critical resource.

H []
v [
’ B B

0 10 20 30 40 50 60 70 80 90 100 110 120

18/40

Resources, priorities and scheduling

Assume we have a fixed priority scheduler, three processes with high (H), medium (M)
and low (L) priority and one critical resource.

H []
v [
’ B B

takes lock

0 10 20 30 40 50 60 70 80 90 100 110 120

18/40

Resources, priorities and scheduling

Assume we have a fixed priority scheduler, three processes with high (H), medium (M)
and low (L) priority and one critical resource.

H []
v [
’ 1 [T]

takes lock

0 10 20 30 40 50 60 70 80 90 100 110 120

18/40

Resources, priorities and scheduling

Assume we have a fixed priority scheduler, three processes with high (H), medium (M)
and low (L) priority and one critical resource.

+ [] L]
v
L]

takes lock

0 10 20 30 40 50 60 70 80 90 100 110 120

18/40

Resources, priorities and scheduling

Assume we have a fixed priority scheduler, three processes with high (H), medium (M)
and low (L) priority and one critical resource.

H: - - - suspends on lock
v -
L] 1]

takes lock

0 10 20 30 40 50 60 70 80 90 100 110 120

18/40

Resources, priorities and scheduling

Assume we have a fixed priority scheduler, three processes with high (H), medium (M)
and low (L) priority and one critical resource.

H: - - - suspends on lock
v [-]
L] 1]

takes lock

0 10 20 30 40 50 60 70 80 90 100 110 120

18/40

Mars Pathfinder and Priority Inversion

19/40

Some examples

@ concurrent counter
@ alist

@ a queue

20 /40

the concurrent counter

struct counter_t {

int val;

}

void incr(struct counter_t xc) {
c—>val+4+;

}

21/40

the concurrent counter

struct counter_t {
int val;

struct counter_t
—t pthread_mutex_t lock;

int val;
} }

vo<|:d_>\|/r;<|:;(—:truct counter_t *c) { pthread_lock (c—>lock):
! c—>val++;

} pthread_unlock(c—>lock);

}

void incr(struct counter_t *c) {

21/40

Do the right thing

Doing the right thing often has a price.

22/40

Do the right thing

Doing the right thing often has a price.

22/40

sloppy counter

counter

thread 1

23/40

sloppy counter

counter

thread 1 thread 2

23/40

sloppy counter

counter

thread 1 thread 2 thread 3

23/40

sloppy counter

counter

I:' local |:| local I:' local

thread 1 thread 2 thread 3

23/40

sloppy counter

counter

I:' local |:| local I:' local

thread 1 thread 2 thread 3

23/40

sloppy counter

counter

local |:| local I:' local

thread 1 thread 2 thread 3

23/40

sloppy counter

counter

local local I:' local

thread 1 thread 2 thread 3

23/40

sloppy counter

counter

local local I:' local

thread 1 thread 2 thread 3

23/40

sloppy counter

counter

local local local

thread 1 thread 2 thread 3

23/40

sloppy counter

counter

local local local

thread 1 thread 2 thread 3

23/40

sloppy counter

counter

local local local

thread 1 thread 2 thread 3

23/40

sloppy counter

counter

local local local

thread 1 thread 2 thread 3

23/40

sloppy counter

counter

local local local

thread 1 thread 2 thread 3

23/40

sloppy counter

counter

local local local

thread 1 thread 2 thread 3

23/40

sloppy counter

counter

local local local

thread 1 thread 2 thread 3

23/40

sloppy counter

counter

@ local local local

thread 1 thread 2 thread 3

23/40

sloppy counter

counter

@ local local local

thread 1 thread 2 thread 3

Sloppy vs Speed - do the right thing.

23/40

how about a list

Simple solution: protect the list with one lock.

24 /40

how about a list

Simple solution: protect the list with one lock.

Concurrent solution: allow several thread to operate on the list concurrently.

24 /40

how about a list

Simple solution: protect the list with one lock.

Concurrent solution: allow several thread to operate on the list concurrently.

@ concurrent reading: not a problem

24/40

how about a list

Simple solution: protect the list with one lock.

Concurrent solution: allow several thread to operate on the list concurrently.

@ concurrent reading: not a problem

@ concurrent updating:

24/40

how about a list

Simple solution: protect the list with one lock.

Concurrent solution: allow several thread to operate on the list concurrently.

@ concurrent reading: not a problem

@ concurrent updating: hmm, how would you solve it?

24/40

What about a queue

Simple solution: protect the queue with one lock.

Concurrent solution: allow threads to add elements to the queue at the same time as
other remove elements.

25 /40

What about a queue

Simple solution: protect the queue with one lock.

Concurrent solution: allow threads to add elements to the queue at the same time as
other remove elements.

e

15 —F 16 ——— | dummy

25 /40

What about a queue

Simple solution: protect the queue with one lock.

Concurrent solution: allow threads to add elements to the queue at the same time as
other remove elements.

e

15 16 ——— | dummy

25 /40

What about a queue

Simple solution: protect the queue with one lock.

Concurrent solution: allow threads to add elements to the queue at the same time as
other remove elements.

e

15 16 ——— | dummy dummy

25 /40

What about a queue

Simple solution: protect the queue with one lock.

Concurrent solution: allow threads to add elements to the queue at the same time as
other remove elements.

e

15 16 ——— | dummy dummy

25 /40

What about a queue

Simple solution: protect the queue with one lock.

Concurrent solution: allow threads to add elements to the queue at the same time as
other remove elements.

e

15 16 ——— | dummy——— | dummy

25 /40

What about a queue

Simple solution: protect the queue with one lock.

Concurrent solution: allow threads to add elements to the queue at the same time as
other remove elements.

e

15 16 —/—— 17 ——— | dummy

25 /40

an operating system

Traditionally operating systems were single threaded - the obvious solution.

26 /40

an operating system

Traditionally operating systems were single threaded - the obvious solution.

The first systems that operated on multi-cpu architectures used one big kernel lock to
avoid any problems with concurrency.

26 /40

an operating system

Traditionally operating systems were single threaded - the obvious solution.

The first systems that operated on multi-cpu architectures used one big kernel lock to
avoid any problems with concurrency.

An operating system that is targeting multi-core architectures will today be multi
threaded and use fine grain locking to increase performance.

26 /40

an operating system

Traditionally operating systems were single threaded - the obvious solution.

The first systems that operated on multi-cpu architectures used one big kernel lock to
avoid any problems with concurrency.

An operating system that is targeting multi-core architectures will today be multi
threaded and use fine grain locking to increase performance.

How are things done in for example the JVM or Erlang?

26 /40

beyond locks

The locks that we have seen are all right:

@ We can take a lock and prevent others from obtaining the lock.

27 /40

beyond locks

The locks that we have seen are all right:

@ We can take a lock and prevent others from obtaining the lock.

@ If someone holds the lock we will suspend execution.

27 /40

beyond locks

The locks that we have seen are all right:

@ We can take a lock and prevent others from obtaining the lock.
@ If someone holds the lock we will suspend execution.
@ When the lock is released we will wake up and try to grab the lock again.

27 /40

beyond locks

The locks that we have seen are all right:

@ We can take a lock and prevent others from obtaining the lock.
@ If someone holds the lock we will suspend execution.
@ When the lock is released we will wake up and try to grab the lock again.

We would like to suspend and only be woken up if a specified condition holds true.

27 /40

the queue revisited

28 /40

the queue revisited

o]

5 —F 16 ———— dummy

28/40

the queue revisited

o]

15 16 ——— | dummy

28/40

the queue revisited

15 16 dummy

28/40

the queue revisited

15 16 dummy

What do we do now?

28/40

conditional variables

29 /40

conditional variables

Introducing pthread conditional variables:

@ pthread_cond_t : the data structure of a conditional variable

29 /40

conditional variables

Introducing pthread conditional variables:

@ pthread_cond_t : the data structure of a conditional variable

@ pthread_cond_init(pthread_cond_t *restrict cond, ...)

29/40

conditional variables

Introducing pthread conditional variables:

@ pthread_cond_t : the data structure of a conditional variable
@ pthread_cond_init(pthread_cond_t *restrict cond, ...)

@ pthread_cond_destroy(pthread_cond_t *cond)

29/40

conditional variables

Introducing pthread conditional variables:

@ pthread_cond_t : the data structure of a conditional variable
@ pthread_cond_init(pthread_cond_t *restrict cond, ...)
@ pthread_cond_destroy(pthread_cond_t *cond)

@ pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)

29/40

conditional variables

Introducing pthread conditional variables:

pthread_cond_t : the data structure of a conditional variable
pthread_cond_init(pthread_cond_t *restrict cond, ...)
pthread_cond_destroy(pthread_cond_t *cond)

pthread_cond_wait(pthread_cond_t *cond, pthread mutex_t *mutex)

e 6 6 o6 o

pthread_cond_signal (pthread_cond_t *cond)

29/40

conditional variables

Introducing pthread conditional variables:

pthread_cond_t : the data structure of a conditional variable
pthread_cond_init(pthread_cond_t *restrict cond, ...)
pthread_cond_destroy(pthread_cond_t *cond)
pthread_cond_wait(pthread_cond_t *cond, pthread mutex_t *mutex)

pthread_cond_signal (pthread_cond_t *cond)

e 6 6 6 o o

pthread_cond_broadcast(pthread_cond_t *cond)

29/40

conditional variables

Introducing pthread conditional variables:

pthread_cond_t : the data structure of a conditional variable
pthread_cond_init(pthread_cond_t *restrict cond, ...)
pthread_cond_destroy(pthread_cond_t *cond)
pthread_cond_wait(pthread_cond_t *cond, pthread mutex_t *mutex)

pthread_cond_signal (pthread_cond_t *cond)

e 6 6 6 o o

pthread_cond_broadcast(pthread_cond_t *cond)

29/40

conditional variables

Introducing pthread conditional variables:

pthread_cond_t : the data structure of a conditional variable
pthread_cond_init(pthread_cond_t *restrict cond, ...)
pthread_cond_destroy(pthread_cond_t *cond)
pthread_cond_wait(pthread_cond_t *cond, pthread mutex_t *mutex)

pthread_cond_signal (pthread_cond_t *cond)

e 6 6 6 o o

pthread_cond_broadcast(pthread_cond_t *cond)

The exact declarations are slightly more complicated, check the man pages.

29/40

the producer/consumer

A single element buffer, multiple consumers, multiple producers.

int buffer;
int count = 0;

30/40

the producer/consumer

A single element buffer, multiple consumers, multiple producers.

int buffer;

int count = O0;
void put(int value) { int get () {
assert (count == 0); assert (count == 1);
count = 1; count = 0;
buffer = value; return buffer;
¥ }

30/40

the producer/consumer

A single element buffer, multiple consumers, multiple producers.

int buffer;

int count = O0;
void put(int value) { int get () {
assert (count == 0); assert (count == 1);
count = 1; count = 0;
buffer = value; return buffer;
¥ }

Let's try to make this work.

30/40

this will not work

void produce (int val) { int consume () {
put (val); int val = get();
T return val;
}

31/40

add a mutex and cond variable

pthread_cond_t cond;
pthread_mutex_t mutex;

32/40

add a mutex and cond variable

pthread_cond_t cond;
pthread_mutex_t mutex;

produce(int val) {
pthread_mutex_lock(&mutex);

if (count = 1)
pthread_cond_wait(&cond, &mutex);
put(val);

pthread_cond_signal(&cond);
pthread_mutex_unlock(&mutex);

}

32/40

add a mutex and cond variable

pthread_cond_t cond;
pthread_mutex_t mutex;

produce(int val) { int consume() {
pthread_mutex_lock(&mutex); pthread_mutex_lock(&mutex);
if (count = 1) if (count = 0)

pthread_cond_wait(&cond, &mutex); pthread_cond_wait(&cond, &mutex);

put(val); int val = get();
pthread_cond_signal(&cond); pthread_cond_signal(&cond);
pthread_mutex_unlock(&mutex); pthread_mutex_unlock(&mutex);

} return val;

32/40

add a mutex and cond variable

pthread_cond_t cond;
pthread_mutex_t mutex;

produce(int val) { int consume() {
pthread_mutex_lock(&mutex); pthread_mutex_lock(&mutex);
if (count = 1) if (count = 0)

pthread_cond_wait(&cond, &mutex); pthread_cond_wait(&cond, &mutex);

put(val); int val = get();
pthread_cond_signal(&cond); pthread_cond_signal(&cond);
pthread_mutex_unlock(&mutex); pthread_mutex_unlock(&mutex);

} return val;

}

When does this work, when does it not work?

32/40

a race condition

If you're signaled to wake up - it might take some time before you do wake up.

33/40

pthread_cond_t filled, empty;
pthread_mutex_t mutex;

34/40

pthread_cond_t filled, empty;
pthread_mutex_t mutex;

produce(int val) {
pthread_mutex_lock(&mutex);
while (count = 1)
pthread_cond_wait(&empty, &mutex);

pthread_cond_signal(&filled);

34/40

pthread_cond_t filled, empty;
pthread_mutex_t mutex;

produce(int val) {
pthread_mutex_lock(&mutex);
while (count = 1)
pthread_cond_wait(&empty, &mutex);

pthread_cond_signal(&filled);

int consume() {
pthread_mutex_lock(&mutex);
while (count = 0)
pthread_cond_wait(&filled , &mutex);

pthread_cond_signal(&empty);

34/40

a larger buffer

int buffer [MAX];
int *getp = O0;
in *putp = O0;
int count = O;

void put (int value) {
assert (count < MAX);
buffer [putp] = value;
putp = putp + 1 % MAX;
count ++;

}

int get() {

assert (count > 0);

int val = buffer[getp];
getp = getp + 1 Y% MAX
count --

return val,;

35/40

final touch

produce (int val) {

while (count == MAX)
pthread_cond_wait (&empty, &mutex);

36/40

final touch

produce (int val) {

while (count == MAX)
pthread_cond_wait (&empty, &mutex);

int consume () {

while (count == 0)
pthread_cond_wait (&filled, &mutex);

36/40

final touch

produce (int val) {

while (count == MAX)
pthread_cond_wait (&empty, &mutex);

int consume () {

while (count == 0)
pthread_cond_wait (&filled, &mutex);

}

Can we allow a producer to add an entry while another removes an entry?

36/40

Where are we now?

@ atomic test and set: we need it

37/40

Where are we now?

@ atomic test and set: we need it

@ spin locks: simple to use but have some problems

37/40

Where are we now?

@ atomic test and set: we need it
@ spin locks: simple to use but have some problems

@ wait and wake : avoid spinning

37/40

Where are we now?

@ atomic test and set: we need it
@ spin locks: simple to use but have some problems
@ wait and wake : avoid spinning

@ condition variables : don't wake up if it's not time to continue

37/40

Where are we now?

@ atomic test and set: we need it
@ spin locks: simple to use but have some problems
@ wait and wake : avoid spinning

@ condition variables : don't wake up if it's not time to continue

Is there more?

37/40

38/40

Properties of a semaphore:

38/40

Properties of a semaphore:

I @ holds a number

38/40

Properties of a semaphore:
I @ holds a number

@ only allow threads to pass is number is above 0

38/40

Properties of a semaphore:
I @ holds a number
@ only allow threads to pass is number is above 0

@ passing threads decremented the number

38/40

Properties of a semaphore:
@ holds a number
I @ only allow threads to pass is number is above 0
@ passing threads decremented the number

@ a thread can increment the number

38/40

Properties of a semaphore:
@ holds a number
I @ only allow threads to pass is number is above 0
@ passing threads decremented the number

@ a thread can increment the number

A semaphore is a counter of resources.

38/40

POSIX semaphores

@ #include <semaphore.h>

39/40

POSIX semaphores

@ #include <semaphore.h>

@ sem_t : the semaphore data structure

39/40

POSIX semaphores

@ #include <semaphore.h>
@ sem_t : the semaphore data structure

o sem_init(sem_t *sem, int pshared, unsigned int value): could be
shared between processes

39/40

POSIX semaphores

@ #include <semaphore.h>
@ sem_t : the semaphore data structure

o sem_init(sem_t *sem, int pshared, unsigned int value): could be
shared between processes

@ int sem_destroy(sem_t *sem)

39/40

POSIX semaphores

@ #include <semaphore.h>
@ sem_t : the semaphore data structure

o sem_init(sem_t *sem, int pshared, unsigned int value): could be
shared between processes

@ int sem_destroy(sem_t *sem)

@ sem_wait(sem_t *sem)

39/40

POSIX semaphores

@ #include <semaphore.h>
@ sem_t : the semaphore data structure

o sem_init(sem_t *sem, int pshared, unsigned int value): could be
shared between processes

@ int sem_destroy(sem_t *sem)
@ sem_wait(sem_t *sem)

@ sem_post(sem_t *sem)

39/40

POSIX semaphores

@ #include <semaphore.h>
@ sem_t : the semaphore data structure

o sem_init(sem_t *sem, int pshared, unsigned int value): could be
shared between processes

@ int sem_destroy(sem_t *sem)
@ sem_wait(sem_t *sem)

@ sem_post(sem_t *sem)

39/40

HAPPY-GO-LUCKY

HAPPY-GO-LUCKY

HAPPY-GO-LUCKY

4 RieHt
Thil9 §

st 1o
o JONT A

Pl :
& :
7 e e

\i

HAPPY-GO-LUCKY

HAPPY-GO-LUCKY

