
Locks and semaphores

Johan Montelius

KTH

2020

1 / 40

recap, what’s the problem
:

include <pthread .h>

volatile int count = 0;

void *hello(void *arg) {
for(int i = 0; i < 10; i++) {

count ++;
}

}

int main () {
pthread_t p1 , p2;

pthread_create (&p1 , NULL , hello , NULL);
pthread_create (&p2 , NULL , hello , NULL);

:
}

2 / 40

Peterson’s algorithm
int request [2] = {0 ,0};
int turn = 0;

int lock(int id) {

request [id] = 1;
int other = 1-id;
turn = other;

while (request [other] == 1 && turn == other) {}; // spin

return 1;
}

void release (int id) {
request [id] = 0;

}
3 / 40

Total Store Order

P1 P2

a b0 0a = 1 b = 1

read b read a

0 01 1

4 / 40

atomic memory operations

All CPU:s provide several versions of atomic operations that both read and write
to a memory element in one atomic operation.

test-and-set: swap i.e. read and write to a memory location, the simplest
primitive
fetch-and-add/and/xor/... : update the value with a given operation,
more flexible
compare-and-swap : if the memory location contains a specific value then
swap

5 / 40

try to lock by swap

int try(int *lock) {
return __sync_val_compare_and_swap (lock , 0, 1);

}

pushq %rbp
movq %rsp , %rbp
movq %rdi , -8(% rbp)
movq -8(% rbp), %rdx
movl $0 , %eax
movl $1 , %ecx
lock cmpxchgl %ecx , (% rdx)
popq %rbp
ret

This is using GCC extensions to C, similar extensions available in all compilers.
6 / 40

a spin-lock

int lock(int *lock) {

while (try(lock) != 0) {}

return 1;
}

void release (int *lock) {
*lock = 0;

}

7 / 40

finally - we’re in control

int global = 0;

int count = 0;

void *hello(void *name) {
for(int i = 0; i < 10; i++) {

lock (& global);
count ++;
release (& global);

}
}

try using taskset -c 1 ./spin 10000

8 / 40

spin locks

9 / 40

avoid spinning

We need to talk to the operating system.

void lock(int *lock) {

while (try(lock) != 0) {
sched_yield (); // in Linux

}

}

10 / 40

Wham -
For how long should we sleep?

We would like to be woken up as the lock is released - before you go-go.
11 / 40

a detour in Sun Solaris

void lock(lock_t *m) {

while (try(m->guard) != 0) {};

if(m->flag == 0) {
m->flag = 1;
m-> guard = 0;

} else {
queue_add (m->queue , gettid ());
m-> guard = 0;
park ();

}

void unlock (lock_t *m) {

while (try(m-> guard) != 0) {};

if(empty(m-> queue)) {
m->flag = 0;

} else {
unpark (dequeue (m->queue));

}
m-> guard = 0;

} 12 / 40

it’s not easy
It’s not easy to to get it right.

/* m->flag == 1 */
:

queue_add (m->queue , gettid ());
m->guard = 0;
park ();
// when I wake up the flag is set

/* m->flag == 1 */
:

queue_add (m->queue , gettid ());
setpark ();
// if somone unparks now my park () is a noop
m->guard = 0;
park ();

if(empty (m-> queue)) {
m->flag = 0;

} else {
// don ’t reset the flag
unpark (dequeue (m-> queue));

}

13 / 40

back to Linux

Introducing futex: fast user space mutex.

futex_wait(mutex, val) : suspend on the mutex if its equal to val.
futex_wake(mutex) : wake one of the treads suspended on the mutex

In GCC you have to call them using a syscall()

14 / 40

a futex lock

void lock(volatile int *lock) {
while (try(lock) != 0) {

// time to sleep ...
futex_wait (lock , 1);

}
}

void unlock (volatile int *lock) {
*lock = 0;
futex_wake (lock);

}

Not very efficient - we want to avoid calling futex_wake() if no one is waiting.

15 / 40

pthread mutex
Using Linux futex or Sun park/unpark directly is error prone and not very
portable.

It’s better to use the pthread library API, probably more efficient and definitely
less problems.

Introducing pthread mutex locks:
pthread_mutex_t : structure that is the mutex
pthread_mutex_init(pthread_mutex_t *mutex, ... *attr)
pthread_mutex_destroy(pthread_mutex_t *mutex)
pthread_mutex_lock(pthread_mutex_t *mutex)
pthread_mutex_unlock(pthread_mutex_t *mutex)

The lock procedure is platform specific, normally implemented as a combination
of spinning and yield.

16 / 40

What could go wrong?

Nothing works, will not even compile.

Deadlock: the execution is stuck, no thread is making progress.
Livelock: we’re moving around in circles, all threads think that they are
doing progress but we’re stuck in a loop.
Starvation: we’re making progress but some threads are stuck waiting.
Unfairness: we’re making progress but some threads are given more of the
resources.

17 / 40

Resources, priorities and scheduling

Assume we have a fixed priority scheduler, three processes with high (H),
medium (M) and low (L) priority and one critical resource.

0 10 20 30 40 50 60 70 80 90 100 110 120

H:

M:

L:
takes lock

suspends on lock

18 / 40

Mars Pathfinder and Priority Inversion

19 / 40

Some examples

concurrent counter
a list
a queue

20 / 40

the concurrent counter

s t ruc t counte r_t {
i n t v a l ;

}

void i n c r (s t ruc t counte r_t ∗c) {
c−>v a l ++;

}

s t ruc t counte r_t {
i n t v a l ;
pthread_mutex_t l o c k ;

}

void i n c r (s t ruc t counte r_t ∗c) {
p th r ead_ lock (c−>l o c k) ;
c−>v a l ++;
pth read_un lock (c−>l o c k) ;

}

21 / 40

Do the right thing
Doing the right thing often has a price.

22 / 40

sloppy counter
counter

thread 1 thread 2 thread 3

local local local2 2

5

0

Sloppy vs Speed - do the right thing.
23 / 40

how about a list

Simple solution: protect the list with one lock.

Concurrent solution: allow several thread to operate on the list concurrently.

concurrent reading: not a problem
concurrent updating: hmm, how would you solve it?

24 / 40

What about a queue

Simple solution: protect the queue with one lock.

Concurrent solution: allow threads to add elements to the queue at the same
time as other remove elements.

front end

dummy1615 17

25 / 40

an operating system

Traditionally operating systems were single threaded - the obvious solution.

The first systems that operated on multi-cpu architectures used one big kernel
lock to avoid any problems with concurrency.

An operating system that is targeting multi-core architectures will today be multi
threaded and use fine grain locking to increase performance.

How are things done in for example the JVM or Erlang?

26 / 40

beyond locks

The locks that we have seen are all right:

We can take a lock and prevent others from obtaining the lock.
If someone holds the lock we will suspend execution.
When the lock is released we will wake up and try to grab the lock again.

We would like to suspend and only be woken up if a specified condition holds
true.

27 / 40

the queue revisited

front end

dummy1615

What do we do now?

28 / 40

conditional variables

Introducing pthread conditional variables:

pthread_cond_t : the data structure of a conditional variable
pthread_cond_init(pthread_cond_t *restrict cond, ...)
pthread_cond_destroy(pthread_cond_t *cond)
pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t
*mutex)
pthread_cond_signal(pthread_cond_t *cond)
pthread_cond_broadcast(pthread_cond_t *cond)

The exact declarations are slightly more complicated, check the man pages.

29 / 40

the producer/consumer

A single element buffer, multiple consumers, multiple producers.
int buffer ;
int count = 0;

void put(int value) {
assert (count == 0);
count = 1;
buffer = value;

}

int get () {
assert (count == 1);
count = 0;
return buffer ;

}

Let’s try to make this work.

30 / 40

this will not work

void produce (int val) {
put(val);

}

int consume () {
int val = get ();
return val;

}

31 / 40

add a mutex and cond variable

pthread_cond_t cond;
pthread_mutex_t mutex;

produce (i n t v a l) {
pthread_mutex_lock(&mutex) ;
i f (count == 1)

pthread_cond_wait (&cond , &mutex) ;
put (v a l) ;
p th r ead_cond_s igna l (&cond) ;
pthread_mutex_unlock(&mutex) ;

}

i n t consume () {
pthread_mutex_lock(&mutex) ;
i f (count == 0)

pthread_cond_wait (&cond , &mutex) ;
i n t v a l = get () ;
p th r ead_cond_s igna l (&cond) ;
pthread_mutex_unlock(&mutex) ;
return v a l ;

}

When does this work, when does it not work?
32 / 40

a race condition

If you’re signaled to wake up - it might take some time before you do wake up.

33 / 40

better

pthread_cond_t filled , empty;
pthread_mutex_t mutex;

produce (i n t v a l) {
pthread_mutex_lock(&mutex) ;
whi le (count == 1)

pthread_cond_wait (&empty , &mutex) ;
:
p th r ead_cond_s igna l (& f i l l e d) ;
:

}

i n t consume () {
pthread_mutex_lock(&mutex) ;
whi le (count == 0)

pthread_cond_wait (& f i l l e d , &mutex) ;
:

p th r ead_cond_s igna l (&empty) ;
:

}

34 / 40

a larger buffer

int buffer [MAX];
int *getp = 0;
in *putp = 0;
int count = 0;

void put(int value) {
assert (count < MAX);
buffer [putp] = value;
putp = putp + 1 % MAX;
count ++;

}

int get () {
assert (count > 0);
int val = buffer [getp];
getp = getp + 1 % MAX
count --
return val;

}

35 / 40

final touch
produce (int val) {

:
while (count == MAX)

pthread_cond_wait (& empty , &mutex);
:

}

int consume () {
:

while (count == 0)
pthread_cond_wait (& filled , &mutex);

:
}

Can we allow a producer to add an entry while another removes an entry?
36 / 40

Where are we now?

atomic test and set: we need it
spin locks: simple to use but have some problems
wait and wake : avoid spinning
condition variables : don’t wake up if it’s not time to continue

Is there more?

37 / 40

Semaphores

Properties of a semaphore:
holds a number
only allow threads to pass is number is
above 0
passing threads decremented the number
a thread can increment the number

A semaphore is a counter of resources.
38 / 40

POSIX semaphores

#include <semaphore.h>
sem_t : the semaphore data structure
sem_init(sem_t *sem, int pshared, unsigned int value): could
be shared between processes
int sem_destroy(sem_t *sem)
sem_wait(sem_t *sem)
sem_post(sem_t *sem)

39 / 40

Summary

40 / 40

