
Journaling
and

Log-structured file systems

Johan Montelius

KTH

2020

1 / 35

The file system

A file system is the user space implementation of persistent storage.

a file is persistent i.e. it survives the termination of a process
a file can be access by several processes i.e. a shared resource
a file can be located given a path name

2 / 35

let’s write to a file

Assume we want to write to a file bar.txt, that requires a new block to be
allocated.

We need to:
update the block bitmap - we have allocated one more data block
update the inode of bar.txt - a new data block, size and access time
update the block - the new data (it might contain old data).

In what order should we perform these operations?

3 / 35

what if we crash

We’re doomed!

How do we cope with crashing drives?

How do we cope with the operating system crashing?

4 / 35

one or two out of three

write to bar.txt

update bitmap update inode update data block

bitmap and inode inode and databitmap and data

5 / 35

two out of three ...

Two out of three is - when it comes to file systems - bad.

6 / 35

Survive a crash

Approaches:

file system check - recover as much as possible
journal - write down what you want to do, before you do it
log - the file system is a log of changes
copy on write - create a perfect copy and flip a pointer

7 / 35

crash recovery
Remember the Very Simple File System:

0 8 16

24 32 40

48 56 56 data blocks

inodes

S i d

How would you check a file system?
8 / 35

fsck /dev/sdb1

$ sudo fsck -f /dev/sdb1
fsck from util-linux 2.27.1
e2fsck 1.42.13 (17-May-2015)
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
/dev/sdb1: 3339/125952 files (0.1% non-contiguous), 318256/503808 blocks

9 / 35

the lost and found

10 / 35

lost+found

> ls -il /
:
:

11010049 drwxr-xr-x 2 root root 12288 nov 28 17:49 libx32

11 drwx------ 2 root root 16384 maj 8 2016 lost+found

14155777 drwxr-xr-x 3 root root 4096 jun 29 14:13 media

262145 drwxr-xr-x 3 root root 4096 okt 22 10:17 mnt

:
:

11 / 35

journal

We need to move from a consistent state to a consistent state.

Let’s keep a journal of things we are about to do.

Journal or Write-Ahead Logging

If we crash we can look at the journal to repeat the last sequence of operations.

12 / 35

Linux ext2 - no journaling

Super-block Groups

S G1 G2 G3 . . . Gn

S i d

copy of super block
inode bitmap

block bitmap

inodes data blocks

13 / 35

Linux ext3 - journaling

Journal

S J G1 G2 . . . Gn

TxB

transaction begin

Iv2

inode

Bv2

bitmaps

Dv2

data block

TxE

transaction end

14 / 35

the safe way

Commit: write the transaction
TxB : transaction id, inode id, bit map id, data block id
Iv2 : the updated inode
Bv2 : the updated bitmaps
Dv2 : the updated data block
TxE : transaction id

Checkpoint: perform the changes
update the blocks: inode, bit maps and data block
remove transaction

15 / 35

disaster scenarios

We manage to write half of the transaction.

We manage to write the whole transaction but not updating the blocks.

We manage to write the whole transaction, updating the blocks but not remove
the transaction.

We manage to write TxB, Iv2 and TxE and then crash.

16 / 35

pending transactions
Journal

S J G1 G2 . . . Gn

Tx1 Tx2 Tx3 Tx4

pending transactions

JS

journal super block

What is the state of the file system?

Can we read from the file system?
17 / 35

Layers of caches

User space

stdio library

Kernel space

Disk

fwrite()/fread()

write buffer

write()/read()

file blocks in memory

checkpoint

pending transactions

flush(): changes in buffer to kernel
sync(): changes to file system
journal/checkpoint
checkpointing: from journal to inodes,
maps and blocks

18 / 35

do the right thing....?

Journal is slow:

Commit: write meta-data and data in a transaction (make sure it’s a
complete transaction).
Checkpointing: update the inode, bitmap and data blocks given the
transaction.

Everything is written twice to disk!

Idea - do the wrong thing and pray for the best.

19 / 35

data only once

Faster:
Commit data : write data directly to block.
Commit meta-data: when data is in block, write meta-data in transaction.
Checkpointing: update the inode and bitmap given transaction.

Even faster:
Commit data : write data directly to block... eventually, hopefully.
Commit meta-data: write meta-data in transaction.
Checkpointing: update the inode and bitmap given transaction (let’s hope
the data is there)

20 / 35

ext4/jdb2

journal: all data and meta-data is written through journal
ordered (default): data is written immediately to block, meta-data through
journal
write-back : data is not guaranteed to be written before meta-data

21 / 35

inode - is everything important

> sudo istat /dev/sda1 2236582
inode: 2236582 Group: 273
Generation Id: 3805640679
uid/gid: 1000/1000 mode: rrw-rw-r-- Flags: Extents,

size: 43 num of links: 1

Inode Times:
Accessed: 2016-12-06 14:51:17.003254544 (CET)
File Modified: 2016-12-06 15:46:55.667041193 (CET)
Inode Modified: 2016-12-06 15:46:55.667041193 (CET)
File Created: 2016-12-06 13:39:15.084806928 (CET)

Direct Blocks: 6946002
22 / 35

What about this?

This album has nothing to do with the following material.
23 / 35

Disk vs Memory

24 / 35

Log-structured file systems

Reading is mostly done from cached copies in memory.

Focus on write operations, try to avoid moving the arm.

Writing is best done in large consecutive segments.

The state of the file system is a log of events.

25 / 35

the log

D D D i7 D D i9

How do we find the inodes?

26 / 35

the inode map

D D D i7 m D D i9 m

The inode map holds mapping from inode number to block addresses.

How do we find the last inode map?

27 / 35

pros and cons

reading a file
read the check region
find the location of the inode map
find inode
read data block

writing a file
write data block
write new copy of inode
write new copy of inode map
update check region

How much can we cache in memory?

Can we delay updating the check region?

28 / 35

reclaim sectors

D D D D D i9m D i7i7 m mCR

Where is the bit map that keeps track of available blocks?

29 / 35

Hmmm.....

Do we want to know where to find blocks ..

if they are scattered around the disk?

30 / 35

garbage collection and compaction

SS

segment summary

A i mBBC i mA i m

Segment summary keeps a mapping from block to inode.

mDDD i mE i mA A AA i m

31 / 35

What about SSDs?

32 / 35

old enough to remember this

The file system UDF used a log structure to do updates on a write-once CD/DVD
33 / 35

Some file systems

ext4 : default Linux system, journaling
F2FS : by Samsung, log-structured, optimised for SSD
NILFS : Nipon Telecom, log-structured
btrfs : originally by Oracle, a copy-on-write system
APFS : next generation for OSX (Sierra 2017), copy-on-write
ReFS : latest file system for Windows servers, copy-on-write
exFAT : Microsoft system used by SD cards

34 / 35

Summary

35 / 35

