Introduction

Johan Montelius

KTH

2020

1/11

What is an operating system?

Abstraction, virtualisation and managing of resource.
@ Abstraction

e How do we create an abstraction layer that provides an environment for
programming of a process?

@ Virtualisation

e How do we create the image of dedicated hardware while in fact we have
several process sharing the same hardware?

@ Resource management

o Given that we have limited amount of resources, how do we share them in a
fair way?

2/11

Abstraction

Applications

a clean interface

The Operating System

a complete mess

Hardware

3/11

Abstraction

application process

4/11

POSIX: Portale Operating System Interface

Operating system API The C Standard Library (ISO C18)
@ process handling: fork, exec, wait, @ memory allocation: malloc, free, ...
@ signal handling: signal, raise, kill, ..
® process communication: pipes, .. o file operations: fopen, fclose, fread,
o threads handling: pthread_create, fwrite,
° ...
@ managing directory and file Command Line Interpreter
ownership @ shell: the text based interface

@ network handling: socket, listen,

@ scripting languages
accept, ...

5/11

int counter = 0;

void hello(char *name){
printf ("Hello: %s, %d\n", name, counter);

}

int main() {
char *me = argv[1];
while(counter !'= 10) {
counter++;
hello(me);
sleep(1);
+

return O;

+ 6/11

Virtualization

A: 4 GB RAM B: 4 GB RAM C: 32 GB RAM

Operating System

Hardware : CPU,8GB RAM,

7/11

Virtualization

OS: Linux 0S: OSX OS: Windows

Hypervisor

Hardware : CPU,8GB RAM,

8/11

Resource management

@ Time: scheduling, how do we divide the execution time among processes

@ Memory: efficient allocation and deallocation, malloc/free...

9/11

to implement an operating system

Why is it hard to implement an operating system?

10/11

Start programming today.

