
Operating Systems ID2206

English version (only for ID2206
HT16)

2017-08-21 8:00-12:00

Instruction

• You are, besides writing material, only allowed to bring one self hand written A4
of notes.

• All answers should be written in these pages, use the space allocated
after each question to write down your answer.

• Answers should be written in Swedish or English.

• You should hand in the whole exam.

• No additional pages should be handed in.

Grades for 6 credits

The exam is divided into a number of questions where some are a bit harder
than others. The harder questions are marked with a star points*, and will
give you points for the higher grades. The exam is thus divided into basic
points and points for higher grades. First of all make sure that you pass the
basic points before engaging with the higher points.

Note that, of the 40 basic points only at most 36 are counted, the points for
higher grades will not make up for lack of basic points. The limits for the
grades are as follows:

• Fx: 21 basic points

• E: 23 basic points

• D: 28 basic points

• C: 32 basic points

• B: 36 basic points and 12 higher points

• A: 36 basic points and 18 higher points

The limits could be adjusted to lower values but not raised.

1

Name: Persnr:

1 Operating systems

1.1 what happens? [2 points]

What is foo and bar?

$ ls -l

totalt 8

drwxrwxr-x 2 kalle admin 4096 dec 1 11:53 bar

-rw-rw-r-- 1 jonny angels 58 dec 1 11:53 foo

1.2 commands in a shell [2 points]

Give a short description of the commands below.

• ln

• chown

• less

• pwd

2

Name: Persnr:

2 Processes

2.1 what is the problem? [2 points]

The code below might compile but we do a severe error. Which is the error
and what could happen?

#include <stdlib.h>

#define SOME 100 // should be > 2

int *some_fibs() {

int buffer[SOME];

buffer[0] = 0;

buffer[1] = 1;

for(int i = 2; i < SOME; i++) {

buffer[i] = buffer[i-1] + buffer[i-2];

}

// buffer contains SOME Fibonacci numbers

return buffer;

}

2.2 Intel 80286 [2 points*]

In the processor 80286, that was launched in 1982, Intel had added a privile-
ged instruction LIDT (Load Interrupt Descriptor Table). What does it mean
that the instruction is privileged and why does this instruction need to be
privileged?/

3

Name: Persnr:

3 Scheduling

3.1 interactive processes [2 points]

Assume that we want to implement a scheduler that gave good response time
to interactive processes but we did not know which processes were interactive.
What would a good heuristic be to determine which processes are interactive
and how could we give them better response time?

4

Name: Persnr:

3.2 state diagram [2 points]

Here follows a state diagram for scheduling of processes. Enter the marked
states and transitions to describe what states means and when a process is
transferred between di�erent states.

.start

.

.

.

.

.

.
.

3.3 stride scheduling [2 points*]

One could implement a stride scheduler by keeping all processes in list sorted
by pass value. The process that is �rst in the list is the one selected for
execution. When the process has executed it is inserted in the list again, at
what position should it be added.

5

Name: Persnr:

4 Virtual memory

4.1 segmenting [2 points]

When we use segmentation to handle physical memory we could have pro-
blems with external fragmentation. This is avoided if we instead use paging.
How is it that we can avoid external fragmentation using paging?

4.2 a tree [2 points]

When representing a page table a tree structure is used. Why use a tree
structure, it would be faster to access an entry if the table was represented
as an array with direct access to the entries. A tree will only give us one or
more indirection so why use a tree?

6

Name: Persnr:

4.3 x86_64 addressing [2 points*]

In a x86-processor in 64�bit mode a PTE contains a 40-bit frame address.
This is combined with a 12 bit o�set to a physical address. This is 52 bits
but a process only has a 48-bit virtual memory. What advantage is there to
have a 52-bit physical address.

5 Memory management

5.1 malloc() [2 points]

In Linux (and all Unix dialects) malloc is a library procedure and not a
system call. Why is it a library procedure? Would it not be quicker if we
called the operating system directly, in the end it will manage the memory
any way.

7

Name: Persnr:

5.2 who's your buddy [2 points]

Assume that we use buddy allocation and have smallest block of size 16
bytes. If we free a block of size 32 bytes that has number 0b001010, which
block is then our buddy?

5.3 address sorted [2 points*]

Assume that we implement a memory manager and keep the free blocks in a
single linked list. If we keep the list sorted on address we might �nd blocks
that should be coalesced. What would a implementation look like and how
do we identify the blocks.

8

Name: Persnr:

6 Concurrent programming

6.1 count [2 points]

If we execute the procedure hello() below in two threads concurrently, the
result will be - yes, what will the result be? How is this possible?

i n t loop = 10 ;

void ∗ h e l l o () {
i n t count = 0 ;

f o r (i n t i = 0 ; i < loop ; i++) {
count++;

}
p r i n t f (" count i s : %d" , count) ;

}

6.2 thing in the heap [2 points]

If we have a multithreaded program the threads can of course read and write
global variables and thus work with shared data structures. How is it with
data structures that one thread allocates on the heap, can these structures
be read and written to by other threads?

9

Name: Persnr:

6.3 thread local storage [2 points*]

Assume that we implement a memory manager (alloc/free) where the free
list is handled using the construct below. Which advantages and possible
disadvantages would this give us?

__thread chunk ∗ f r e e = NULL;

void f r e e (void ∗memory) {
i f (memory != NULL) {

s t r u c t chunk ∗cnk = (s t r u c t chunk ∗) ((s t r u c t chunk ∗)memory − 1) ;
cnk−>next = f r e e ;
f r e e = cnk ;

}
re turn ;

}

10

Name: Persnr:

7 File systems and storage

7.1 rpm [2 points]

There are hard drives with di�erent performance, one thing that di�er is the
rotation speed. Why is the rotation speed important, what is improved and
what could possibly decrease?

7.2 what goes where [2 points]

Assume that we have simple �le system without a journal where we write
directly to bitmaps, inodes and data data blocks. Assume that we shall write
to a �le and that am additional data block is needed. Which structures are
updated and which changes are made?

11

Name: Persnr:

7.3 log-based fs [2 points*]

In a log based �le system we write all changes to a continuous log without
doing any changes to existing blocks of a �le. What is the advantage of
writing new modi�ed copies of blocks rather than do the small changes we
want to do in the original blocks? If it is better, are there any disadvantages?

12

Name: Persnr:

8 Virtualization

8.1 a system call [2 points]

When we do a system call from a user process in a virtualized operating
system, control is passed between: user process, the virtualized operating
system and the hypervisor. Show in a sequence diagram what happens from
the execution of INT 0x80 to the point where control is resumed.

Hypervisor Guest operating system Application

running

system call

INT 0x80

resume execution

8.2 set the IDT [2 points*]

When a hypervisor starts a virtualized operating system, the virtualized
system will want to set the register that controls the location of the IDT.
What is the problem and how is it solved?

13

Name: Persnr:

9 Implementation

9.1 memory map [2 points]

Below is a, somewhat shortened, printout of a memory mapping of a running
process. Brie�y describe the role of each segment marked with ???.

> cat /proc/13896/maps

00400000-00401000 r-xp 00000000 08:01 1723260 .../gurka ???

00600000-00601000 r--p 00000000 08:01 1723260 .../gurka ???

00601000-00602000 rw-p 00001000 08:01 1723260 .../gurka ???

022fa000-0231b000 rw-p 00000000 00:00 0 [???]

7f6683423000-7f66835e2000 r-xp 00000000 08:01 3149003 .../libc-2.23.so ???

:

7ffd60600000-7ffd60621000 rw-p 00000000 00:00 0 [???]

7ffd60648000-7ffd6064a000 r--p 00000000 00:00 0 [vvar]

7ffd6064a000-7ffd6064c000 r-xp 00000000 00:00 0 [vdso]

ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]

14

Name: Persnr:

9.2 fork [2 points]

If we run the program below, what will be printed on the terminal? Why?

i n t x = 0 ;

i n t main () {

i n t pid ;

pid = fo rk () ;

i f (pid == 0) {
p r i n t f (" ch i l d : x i s at %p\n" , &x) ;

} e l s e {
p r i n t f ("mother : x i s at %p\n" , &x) ;
wait (NULL) ;

}

re turn 0 ;
}

15

Name: Persnr:

9.3 pipes [2 points]

We can easily do a fork() and then set up stdin and stdout for the two
processes to communicate through a so called pipe. How can we make tow
processes do the same if we do not create the process using a fork(). How
can one process create a pipe that another process can read from?

16

Name: Persnr:

9.4 a directory [2 points]

A directory is in Linux represented in the same way as a �le i.e. an inode that
is pointing to a data block and the data block holds the name and identi�ers
of the �les in the directory. This mean that we use the same system calls
when we read a directory as we use when we read a �le - true or false?
Motivate.

9.5 sbrk() and then what [2 points]

You can use the system call sbrk() to allocate more memory for the heap
but how can a process return memory?

17

Name: Persnr:

9.6 a cheap operation [2 points]

Below is a extract from a program that implements the clock algorithm. The
code shows why the clock-algorithm is cheaper compared to LRU. What
should we have done in the corresponding case if we implemented LRU?

:
i f (entry−>present == 1) {
entry−>re f e r en c ed = 1

} e l s e {
:

}

18

Name: Persnr:

9.7 execlp() [2 points*]

In the program below we call the library procedure execlp() that replaced
the current executing process' code. Here we use it to make call to /bin/ls

and output both the current directory and the home directory of a user. Why
will this not work?

i n t main () {

i n t pid = fo rk () ;

i f (pid == 0) {

char cwd [1 0 2 4] ;
getcwd (cwd , s i z e o f (cwd)) ;
p r i n t f (" This i s the cur r ent d i r e c t o r y : \n ") ;
exec lp ("/ bin / l s " , "/ bin / l s " , &cwd , NULL) ;

p r i n t f (" This i s your home d i r e c t o r y : \n ") ;
exec lp ("/ bin / l s " , "/ bin / l s " , getenv ("HOME") , NULL) ;

} e l s e {
wait (NULL) ;

}
re turn 0 ;

}

19

Name: Persnr:

9.8 sockets [2 points*]

When we want to communicate between processes we can use so called soc-

kets. They come in di�erent versions, among other SOCK_STREAM and SOCK_-

DGRAM. Describe the di�erence between these versions.

9.9 delat minne [2 points*]

Processes in a Unix-system can communicate with each other over several
di�erent channels. They can use shared memory areas much in the same
way as two threads in a process can share heap and global data. How can
we make two processes share memory?

20

Name: Persnr:

9.10 context [2 points*]

By the help of the library procedure getcontext(), a process can safe its
own so called context. We could build a library that allowed us to create new
executing threads and manually switch between these by calling a scheduler.

Why would we want to build such a library, are there any advantages? What
would the disadvantages be?

21

