
Operating Systems ID2206

English version

2017-04-10 14:00-18:00

Name:

Instruction

• You are, besides writing material, only allowed to bring one self hand written A4
of notes. Mobiles etc, should be left to the guards.

• All answers should be written in these pages, use the space allocated
after each question to write down your answer.

• Answers should be written in Swedish or English.

• You should hand in the whole exam.

• No additional pages should be handed in.

Grades for 6 credits

The exam is divided into a number of questions where some are a bit harder
than others. The harder questions are marked with a star points*, and will
give you points for the higher grades. The exam is thus divided into basic
points and points for higher grades. First of all make sure that you pass the
basic points before engaging with the higher points.

Note that, of the 40 basic points only at most 36 are counted, the points for
higher grades will not make up for lack of basic points. The limits for the
grades are as follows:

• Fx: 21 basic points

• E: 23 basic points

• D: 28 basic points

• C: 32 basic points

• B: 36 basic points and 12 higher points

• A: 36 basic points and 18 higher points

1

The limits could be adjusted to lower values but not raised.

Gained points

Don't write anything here.

Uppgift 1 2 3 4 5 6 7 8 9

Max G/H 4/0 2/2 4/2 4/2 4/2 4/2 4/2 2/2 12/8

G/H

Total number of points:

2

Name: Persnr:

1 Operating systems

1.1 what happens? [2 points]

If we give the following commands after each other in a shell; what will the
result be?

> mkdir foo

> cd foo

> echo "hello hello" > tomat.txt

> mkdir ../bar

> ln tomat.txt ../bar/gurka.txt

> rm tomat.txt

> cd ../

> wc -w bar/gurka.txt

1.2 commands in a shell [2 points]

Give a short description of the commands below.

• cat

• less

• ln

• mv

3

Name: Persnr:

2 Processes

2.1 what is where? [2 points]

In the code below we have allocated two arrays; which arrays and in which
segments do we �nd them: global, stack or heap?

#include <stdio.h>

#include <stdlib.h>

int x = 43;

int h[] = {1,2,3,4};

int *foo(int *a, int s) {

int *r = malloc(s * sizeof(int));

for(int i = 0; i < s; i++) {

r[i] = a[i] + x;

}

return r;

}

int main() {

int *c = foo(h, 4);

printf("%d \n", c[3]);

return 0;

}

4

Name: Persnr:

2.2 privileged instructions [2 points*]

In a x86-architecture some intructions are priviliged and can only be executed
in Ring-0. As an example we can take: HLT (halt), LIDT (load interupt
descriptor table), MOV CR (write to Control Register). How do we use this
feature to make an e�cient implementation of an operating system?

3 Scheduling

3.1 shortest time-to-completion �rst [2 points]

The scheduler �shortest time-to-completion �rst� is a optimal scheduler; what
is it that it optimizes and why is it in practice not usable?

3.2 reaction time [2 points]

When we wan to reduce the reaction time we want to preempt a job even
though the job is not completed. If we choose to do this we have one pa-
rameter to set, by changing this we can improve the reaction time. Which
parameter is it? How should it be set and what unwanted consequence might
it have?

5

Name: Persnr:

3.3 real-time scheduler [2 points*]

In a real-time scheduler, jobs are described by three values: e, d och p. What
is the meaning of these parameters (you don't have to remember which is
which but should give the properties that describe a job).

• e:

• d:

• p:

4 Virtual memory

4.1 paging [2 points]

Assume we have a virtual address that consist of a 22-bit page number and
a 12-bit o�set. We have a physical address space of 32 bits, encode a frame
number in 20 bits and elements in a page table are 4 bytes. How large is a
page and how large would a complete page table be?

4.2 reverse page table [2 points]

If we have a physical memory that is much smaller than the virtual memory
that the operating system provides it could be an idea to implement so called
inverted page table. How does an inverted page table work and what bene�ts
does it give?

6

Name: Persnr:

4.3 bounds [2 points*]

When we implement a segmented memory we needa bounds value that descri-
bes the size of the segment. If we do not have this we risk accessing memory
outside of the segment. When we implement a paged memory there is no
need for a bounds value. Why don't we need one? What prevents us from
addressing outside of the page?

If there is something that prevents us from doing the wrong thing, is there
someting that costs. What does it cost?

5 Memory management

5.1 camping vacation [2 points]

When I'm out camping in Sweden di�erent camp sites have di�erent rules.
Some tell me to place my tent anywhere but make sure that I leave a four
meter distance to other tents. Other sites have divided their park into equal
size lots and tell me to place my tent in lot nuymber 17.

What is the problem with each of the strategies and what has this to do with
operating systems.

7

Name: Persnr:

5.2 static reallocation [2 points]

Instead of implementing a dynamic memory management we can make a
static reallocation of programs when they are inserted into memory. What
does it mean to do a static reallocation, what has to be done when a program
is placed in memory? Give an example.

5.3 code, data, stack ... [2 points*]

When implementing a segmented memory, one solution is for example to
let the uppermost bits in a virtual address determine which segment to use.
Another solution is to have separate segments for code, data and stack. If we
would have only these three segments, how would the processor determine
which segment to use when we do operations on the memory?

8

Name: Persnr:

6 Concurrent programming

6.1 count [2 points]

What will be printed if we execute the procedure hello() below concurrently
in two threads? Motivate your answer.

i n t loop = 10 ;

void ∗ h e l l o () {
i n t count = 0 ;

f o r (i n t i = 0 ; i < loop ; i++) {
count++;

}
p r i n t f (" the count i s %d\n" , count) ;

}

6.2 but why [2 points]

If we have a multicore CPU it is of course an advantage to work with several
threads since we can better make use of the computational power. If we only
have one core it is rather pointless to divide a program up into threads, or?
Kan a program divided into threads execute faster even if we only have one
core to run on? Motivate.

9

Name: Persnr:

6.3 green treads [2 points*]

Some operating systems provide so called green threads that is, threads that
are implemented by library procedures and that are managed by the user
process. Describe an advantage and a disadvantage of green threads.

7 File systems and storage

7.1 a regular HDD [2 points]

If a hard disk drive has a average seek time of 10 ms, a rotation speed of
7200 rpm (rounds per minute) and a read performance of 200 MiB/s. Then
what is the average time to read a random sector on 4KiB

10

Name: Persnr:

7.2 sectors to �le system [2 points]

A hard disk drive consist of a a number of sectors. Describe a simple im-
plementation of a �le system and the data structures of the system can be
stored on the drive.

7.3 log based �le system [2 points*]

Below you see a schematic image of a log based �le system. If the system
now has a shortage of space it will try to create some. How can more space
be created and what will the system look like when this has been done?

SS A i mBBC i mA i mDD i mE i m

11

Name: Persnr:

8 Virtualization

8.1 why [2 points]

Describe one important reason why you would like to run several virtual
operating systems instead of one single.

8.2 kernel/user mode [2 points*]

Assume that we have hypervisor running in kernel mode and a virtualized
system running in user mode to protect the hypervisor. Why can we not
allow the virtualized operating system to remain in user space when one of
its processes is executing?

12

Name: Persnr:

9 Implementation

9.1 the stack [2 points]

Below we see a program that will print the content of the stack.

void zot(unsigned long *stop, int a1, int a2, int a3, int a4, int a5, int a6) {

unsigned long r = 0x456;

unsigned long *i;

for(i = &r; i <= stop; i++){

printf("%p 0x%lx\n", i, *i);

}

}

int main() {

unsigned long p = 0x123;

zot(&p,1,2,3,4,5,6);

back:

printf(" back: %p \n", &&back);

return 0;

}

When executed we see the following print out. Describe the values indicated
with arrows (<-
-).

0x7ffeb3331f58 0x456

0x7ffeb3331f60 0x7ffeb3331f60 <-- ??

0x7ffeb3331f68 0x3a7dbfad7df4b100

0x7ffeb3331f70 0x7ffeb3331fa0

0x7ffeb3331f78 0x400663 <-- ??

0x7ffeb3331f80 0x6 <-- ??

0x7ffeb3331f88 0x4004a0

0x7ffeb3331f90 0x123

back: 0x400667

13

Name: Persnr:

9.2 sbrk() [2 points]

The procedure malloc() is a library routine that uses the system call sbrk()
to allocate memory. What is the advantage for a process to use malloc()

instead of calling sbrk() directly?

9.3 pipes [2 points]

If we have two processes, one producer and one consumer, that are communi-
cating through a so called pipe. How can we then prevent that the producer
sends more information than the consumer is ready to receive and thereby
crash the system.

9.4 tmpfs [2 points]

What does the command below do and why would we like to do that? What
is the disadvantage?

> sudo mount -t tmpfs tmpfs ./tmp

14

Name: Persnr:

9.5 swap context [2 points]

The program below is playing its own context. What does the structure
ucontext_t contain and what will the result be when we execute the pro-
gram?

#include <stdlib.h>

#include <stdio.h>

#include <ucontext.h>

int main() {

int done = 0;

ucontext_t one;

ucontext_t two;

getcontext(&one);

printf("hello %d\n", done);

if(!done) {

done = 1;

swapcontext(&two, &one);

}

return 0;

}

9.6 read performace [2 points]

How large is the di�erence in read performance if we compare reading from
main memory to reading from a �le from a rotating hard drive (�rst read of
�le)?

• 10ns vs 1µs

• 10ns vs 10ms

• 100ns vs 10µs

• 1µs vs 1ms

15

Name: Persnr:

9.7 a header and a footer [2 points*]

When implementing a memory allocator it is common to hide a header just
before the memory area that is allocated. In this head you can for example
record the size of the are to make it easier to handle the area when freed.
One can also use a hidden footer after the area where one can record that the
area is used or free and maybe a pointer to its head. What is the advantage
of having this information after the area, is it not enough with the header?

9.8 lite bättre [2 points*]

A so called pipe is a simple way to send data from one process to another.
It does have its limitations and a better way is to use so called sockets. If
we instead of a pipe use a stream socket between two processes we will have
several advantages. Describe two advantages that a steam socket gives us
that we will not have if we use a pipe.

16

Name: Persnr:

9.9 character device [2 points*]

We can create so called character device and interact with it using ioctl.
In the code below, describe what fd, JOSHUA_GET_QUOTE and buffer is and
how the device could work.

if (ioctl(fd, JOSHUA_GET_QUOTE, &buffer) == -1) {

perror("Hmm, not so good");

} else {

printf("Quote - %s\n", buffer);

}

9.10 delat minne [2 points*]

Processes in a Unix-system can communicate with each other over several
di�erent channels. They can use shared memory areas much in the same
way as two threads in a process can share heap and global data. How can
we make two processes share memory?

17

