Operating Systems 1D2206
English version
2017-01-14 08:00-12:00

Name:

Instruction

You are, besides writing material, only allowed to bring one self hand written A4
of notes. Mobiles etc, should be left to the guards.

All answers should be written in these pages, use the space allocated
after each question to write down your answer.

Answers should be written in Swedish or English.
You should hand in the whole exam.

No additional pages should be handed in.

Grades for 6 credits

The exam is divided into a number of questions where some are a bit harder
than others. The harder questions are marked with a star points*, and will
give you points for the higher grades. The exam is thus divided into basic
points and points for higher grades. First of all make sure that you pass the
basic points before engaging with the higher points.

Note that, of the 40 basic points only at most 36 are counted, the points for
higher grades will not make up for lack of basic points. The limits for the
grades are as follows:

Fx: 21 basic points

E: 23 basic points

D: 28 basic points

C: 32 basic points

B: 36 basic points and 12 higher points
A: 36 basic points and 18 higher points

The limits could be adjusted to lower values but not raised.
Gained points

Don’t write anything here.

Uppgift 1 2 3 4 5 6 7 8 9

Max G/H | 4/0 | 2/2 [4/2 [4/2 [4/2 [4/2 [4/2 [2/2 [12/8

G/H

Total number of points:

Name:

1 Operating systems

1.1 files och rights [2 points]

In a Unix operating system files and directories protected in a way that limits
the rights to use an object. We can see these rights when we list the content
in a directory. Describe which rights are given to the file called foo below.

> 1s -1 foo
> -rwxr-x--- 1 kalle trusted 234 dec 26 13:18 foo

1.2 commands in a shell [2 points]

Give a short description of the commands below.

® WC

e grep

e mkdir

e pwd

2 Processes

2.1 fork() [2 points]

What is printed when we run the program below and why do we get this
result?

Name:

#include <unistd.h>
#include <stdio.h>

int x = 42;

int main() {

if (fork () 0) {

X+

printf("x = %d\n", x);
} oelse {

X+

printf("x = %d\n", x);
}

return 0;

2.2 IDT |2 points*]

What does the IDT (Interrupt Descriptor Table) contain and what happens

Name:

when a user process executes the instruction INT (x86 assembler). Give a
short description.

3 Scheduling

3.1 state diagram [2 points]
Here follows a state diagram for scheduling of processes. Enter the marked

states and transitions to describe what states means and when a process is
transferred between different states.

start

3.2 shortest job first [2 points]

Assume we have a scheduler that implements “shortest job first” i.e. not able

Name:

to preempt jobs. If we have three jobs that will take 10ms, 20ms and 30ms
it’s a better strategy than taking the jobs in random order, show why.

3.3 fair scheduler [2 points*]

There is a group of scheduleres where each process will get a “fair” share of
the processing power. Some of these are based on a “lottery” but we can also

Name:

implement a complete deterministic scheduler. What is this method called?
Give a short description of how it works.

4 Virtual memory

4.1 base register [2 points]

Why do you not want to implement a segmented memory using only a base
register to describe a segment?

4.2 a tree [2 points]

When representing a page table a tree structure is used. Why use a tree
structure, it would be faster to access an entry if the table was represented

Name:

as an array with direct access to the entries. A tree will only give us one or
more indirection so why use a tree?

4.3 segmented memory x86 [2 points]

When is segmented memory used in a Linux system on a x86 architecture?

5 Memory management

5.1 parking lots [2 points]

When they arranged for parking space along Sveavigen (central Stockholm)
there were two alternatives: 1/ have painted parking lots of 6m in length or
2/ let cars park with 25 cm distance without the limitation of painted lots.
If we, for simplicity, assume that cars are between 4.0 and 5.5 meters and

Name:

that everyone can park a car in a slot with half a meter of extra space, then
what is the problem with each of the solutions?

5.2 list of free blocks [2 points]

If we when implementing malloc () and free() choose to save the free blocks
in a linked list that is ordered by their address, we will have a certain ad-
vantage. When we free a block we can insert it in the list and perform an
operation that reduces the external fragmentation. What can we do and why
is it an advantage to have the blocks order by address?

5.3 buddy allocation [2 points]

The so called “Buddy algorithm” to handle free space has a clear advantage
but also a deficiency. Assume we have a memory divided into 4K-blocks and

Name:

we have 16K that are free in block 0b10100. What do we do when get 8K
free in block 00110007 How does this illustrate the deficiency?

6 Concurrent programming

6.1 count [2 points]

If we execute the procedure hello() below in two threads concurrently, the
result will be that count obtains the value ...- which values can count hold
after both of the threads have completed the execution? Why is this possible?

int loop = 10;
int count = 0;

void xhello () {

for(int i = 0; i < loop; i++) {
count-+-+;
}

}

10

Name:

6.2 own stack [2 points]

If we divide a process in two threads, the two threads can read form each
others stacks - true or false? Motivate your answer.

6.3 total store order[2 points*]

How does total store order differ from sequential consistency?

7 File systems

7.1 zombies [2 points]

If one happens to remove the last link to a file the file becomes a so called
zombie file - true or false? Motivate your answer.

11

Name:

7.2 bit maps [2 points]

When implementing a file system we can dive a disk into: super block, bit
maps, inodes and data blocks. What are the bit maps used for?

7.3 a directory [2 points™]
Which information does a directory contain and how is it represented? Descri-

be in terms of inodes and data blocks, which information is where? Draw a
simple picture that describes the structure.

12

Name:

8 Virtualization

8.1 user mode [2 points]

When virtualizing a complete operating system the virtualized operating
system will execute in user mode - true or false? Motivate your answer.

8.2 emulators [2 points™|
A regular hypervisor is used to virtualize one or more operating systems

allowing all to run on the same hardware. The so called emulators, such as
QEMU, have an additional advantage - which?

9 Implementation

9.1 memory map [2 points]

Below is a, somewhat shortened, printout of a memory mapping of a running
process. Briefly describe the role of each segment marked with 777,

> cat /proc/13896/maps

00400000-00401000 r-xp 00000000 08:01 1723260 .../gurka 777
00600000-00601000 r--p 00000000 08:01 1723260 .../gurka 777
00601000-00602000 rw-p 00001000 08:01 1723260 .../gurka 7?77
022£a000-0231b000 rw-p 00000000 00:00 O [777]

7£6683423000-7£66835€2000 r-xp 00000000 08:01 3149003 .../1libc-2.23

13

.80 777

Name:

7££d60600000-7££d60621000 rw-p 00000000 00:00 O [?77]

7££d60648000-7££d6064a000 r--p 00000000 00:00 O [vvar]
7££d6064a000-7££d6064c000 r-xp 00000000 00:00 O [vdso]

fEEEFELF££600000-£E£EL££E£F601000 r-xp 00000000 00:00 O [vsyscall]

9.2 execlp() [2 points™*]

In the program below we call the library procedure execlp(). What will
this procedure do and when and in what order will “Humle” and “Dumle” be
written? Motivate your answer.

int main() {
int pid = fork ();

if (pid = 0) {
execlp ("gurka", "gurka", NULL);
printf("Humle\n");
} else {
wait (NULL) ;
printf("Dumle\n");
}

return 0;

14

Name:

9.3 modify the kernel [2 points]

If we should add a functionality to a Linux kernel, we must recompile the
kernel and restart the system - true or false? Motivate your answer.

9.4 proc_create() [2 points™®]

There are several ways in which we can communicate with at kernel module,
the code below shows one way. Here we initialize certain data structures that
then allow other processes to easily access the module. Which is the visible
interface that processes will use? Give a brief explanation.

static int _ init skynet init(void) {
proc_create ("skynet", 0, NULL, &skynet fops);
printk (KERN_INFO "Skynet in control\n");
return 0;

}

static void _ exit skynet cleanup(void) {
remove proc_entry("skynet", NULL);
printk (KERN_INFO "I’ 11 be back!\n");

}

15

Name:

9.5 a graph [2 points]

Assume that we do an experiment were we compare three methods to im-
plement a swapping algorithm i.e. to throw out pages from memory when
more frames are needed. In our experiment we have a virtual memory of 100
pages and simulate a memory of up to 100 frames. The experiment simulate
a sequence of memory operations with temporal locality.

In the diagram below you should plot justifiable graphs for the following
three strategies:

e RND: choose a page by random

e OPT: choose a page that will not be used in a long time

e LRU: choose a page that has not been used for a long time

1.0 7
0.9 1
0.8 1
0.7 1
0.6 1

0.5 1

hit ratio

0.4 1
0.3 1
0.2 1

0.1 -

O T T T T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100

frames

16

Name:

9.6 an expensive operation [2 points]

Below is a extract from a program that implements Least Recently Used
(LRU). The code shows why LRU is expensive to implement and why one
probably instead choose to approximate this strategy. What is the code doing
and when is it executed?

if (entry—>present =— 1) {

if (entry—next != NULL) {

if (first — entry) {
first = entry—>next;
} else {
entry—>prev—next = entry—>next;

}

entry—next—>prev = entry—>prev;

entry—>prev = last;
entry—next = NULL;

last —next = entry;
last = entry;

}
} oelse {

9.7 tick-tack [2 points*]

When implementing the clock algorithm it is sufficient to have the list single

17

Name:

linked i.e. there is no need for a double linked list. Why can we manage with
a single linked list?

9.8 lock() [2 points]

Assume that we define try() as the code below. The procedure __sync_-
val_compare_and_swap(int *loc, int old, int new) will in an atomic
operation compare the value of *1loc and if it is equal to 0ld write new in its
place. The procedure returns the value of *loc before the operation.

int try(volatile int smutex) {
return _ sync_val compare and swap(mutex, 0, 1);
}

How can we implement a simple spin lock? Use the code below and assume
that we call lock() and unlock() with a pointer to a global lock that holds
0 in its unlocked state.

void lock(volatile int sxmutex) {

}

void unlock(volatile int xmutex) {

}

9.9 futex wait() [2 points]

We can improve the characteristics of a spin lock by using so called futez. The
code that follows defined two procedures futex_wait () and futex_wake().

int futex wait(volatile int xfutexp) {
return syscall (SYS futex, futexp , FUTEX WAIT, 1, NULL, NULL,
¥

18

Name:

void futex wake(volatile int sfutexp) {
syscall (SYS futex, futexp, FUTEX WAKE, 1, NULL, NULL, 0);
}

What do these procedures do and how are they used?

9.10 list updates [2 points*]

Assume we have a single linked sorted list that we wish to update by adding
or removing elements. We want several threads to be able to perform opera-
tions in parallel and therefore implement a list where each cell is protected
by a lock. The operations require that we hold two locks when we remove an
item but this is easily implemented.

We can choose to use pthread_mutex_lock() to implement the lock ope-
rations but we could also use simple spin-locks. What is the advantage and
disadvantage of using spin-locks and how are the conditions changed if we
have more threads and less cores?

19

