
Operating Systems ID2206

English version

2017-01-14 08:00-12:00

Name:

Instruction

• You are, besides writing material, only allowed to bring one self hand written A4
of notes. Mobiles etc, should be left to the guards.

• All answers should be written in these pages, use the space allocated
after each question to write down your answer.

• Answers should be written in Swedish or English.

• You should hand in the whole exam.

• No additional pages should be handed in.

Grades for 6 credits

The exam is divided into a number of questions where some are a bit harder
than others. The harder questions are marked with a star points*, and will
give you points for the higher grades. The exam is thus divided into basic
points and points for higher grades. First of all make sure that you pass the
basic points before engaging with the higher points.

Note that, of the 40 basic points only at most 36 are counted, the points for
higher grades will not make up for lack of basic points. The limits for the
grades are as follows:

• Fx: 21 basic points

• E: 23 basic points

• D: 28 basic points

• C: 32 basic points

• B: 36 basic points and 12 higher points

• A: 36 basic points and 18 higher points

1

The limits could be adjusted to lower values but not raised.

Gained points

Don't write anything here.

Uppgift 1 2 3 4 5 6 7 8 9

Max G/H 4/0 2/2 4/2 4/2 4/2 4/2 4/2 2/2 12/8

G/H

Total number of points:

2

Name:

1 Operating systems

1.1 �les och rights [2 points]

In a Unix operating system �les and directories protected in a way that limits
the rights to use an object. We can see these rights when we list the content
in a directory. Describe which rights are given to the �le called foo below.

> ls -l foo

> -rwxr-x--- 1 kalle trusted 234 dec 26 13:18 foo

Answer: The owner kalle has read, write and execute rights. Members of
the group trusted can read and execute. Other users have no rights.

1.2 commands in a shell [2 points]

Give a short description of the commands below.

• wc

• grep

• mkdir

• pwd

Answer: Have a look using man.

2 Processes

2.1 fork() [2 points]

What is printed when we run the program below and why do we get this
result?

#inc lude <uni s td . h>
#inc lude <s td i o . h>

in t x = 42 ;

3

Name:

i n t main () {

i f (f o rk () == 0) {
x++;
p r i n t f ("x = %d\n" , x) ;

} e l s e {
x++;
p r i n t f ("x = %d\n" , x) ;

}
re turn 0 ;

}

Answer: The output will be x = 43 and x = 43 since the two processes
have their own copy of x.

2.2 IDT [2 points*]

What does the IDT (Interrupt Descriptor Table) contain and what happens
when a user process executes the instruction INT (x86 assembler). Give a
short description.

Answer: The IDT is set up by the kernel and contains pointers to proce-
dures that should be executed by di�erent interrupts. When a user process
executes for example INT 80 the process enters kernel mode and jumps to
the procedure indicated by position 80 (hex).

3 Scheduling

3.1 state diagram [2 points]

Here follows a state diagram for scheduling of processes. Enter the marked
states and transitions to describe what states means and when a process is
transferred between di�erent states.

Answer:

4

Name:

readystart running

blocked

exit

scheduled

timout

terminate

I/O request
I/O complete

3.2 shortest job �rst [2 points]

Assume we have a scheduler that implements �shortest job �rst� i.e. not able
to preempt jobs. If we have three jobs that will take 10ms, 20ms and 30ms
it's a better strategy than taking the jobs in random order, show why.

Answer: If we take them is SJF-order we will have a mean turnaround time
of (10 + 30 + 60)/3 = 33 ms. If we take them in the �wrong� order we will
have a turnaround time of (30 + 50 + 60)/3 = 47 ms.

3.3 fair scheduler [2 points*]

There is a group of scheduleres where each process will get a �fair� share of
the processing power. Some of these are based on a �lottery� but we can also
implement a complete deterministic scheduler. What is this method called?
Give a short description of how it works.

Answer: It's called stride scheduling. All processes have a value and a stride.
The process with the smallest value is scheduled but then will have its stride
added to its value.

4 Virtual memory

4.1 base register [2 points]

Why do you not want to implement a segmented memory using only a base

register to describe a segment?

Answer: A process could use an o�set that will address a location outside
of the segment. To prevent this a register is used to set a bound on the o�set.

5

Name:

4.2 a tree [2 points]

When representing a page table a tree structure is used. Why use a tree
structure, it would be faster to access an entry if the table was represented
as an array with direct access to the entries. A tree will only give us one or
more indirection so why use a tree?

Answer: We don't need to represent the whole table but only a fraction of
the virtual address space that is used. This will give us a much smaller data
structure to manage - important for a 32-bit address space and completely
decisive for a 64-bit space.

4.3 segmented memory x86 [2 points]

When is segmented memory used in a Linux system on a x86 architecture?

Answer: It is used to implement memory speci�c to a thread or core.

5 Memory management

5.1 parking lots [2 points]

When they arranged for parking space along Sveavägen (central Stockholm)
there were two alternatives: 1/ have painted parking lots of 6m in length or
2/ let cars park with 25 cm distance without the limitation of painted lots.
If we, for simplicity, assume that cars are between 4.0 and 5.5 meters and
that everyone can park a car in a slot with half a meter of extra space, then
what is the problem with each of the solutions?

Answer: In the �rst alternative we will have internal fragmentation since
we loose in average 75 cm in each lot. The second alternative will risk having
external fragmentation since empty spaces can be two small for most cars.

5.2 list of free blocks [2 points]

If we when implementing malloc() and free() choose to save the free blocks
in a linked list that is ordered by their address, we will have a certain ad-
vantage. When we free a block we can insert it in the list and perform an
operation that reduces the external fragmentation. What can we do and why
is it an advantage to have the blocks order by address?

Answer: We will immediately be able to tell if the adjacent blocks can be
merged with the new block to form a larger block. If the blocks were not
ordered by address we would have to search through all blocks.

6

Name:

5.3 buddy allocation [2 points]

The so called �Buddy algorithm� to handle free space has a clear advantage
but also a de�ciency. Assume we have a memory divided into 4K-blocks and
we have 16K that are free in block 0b10100. What do we do when get 8K
free in block 0b11000? How does this illustrate the de�ciency?

Answer: The two blocks are adjacent to each other but we will not be able
to merge them into a 24K block.

6 Concurrent programming

6.1 count [2 points]

If we execute the procedure hello() below in two threads concurrently, the
result will be that count obtains the value . . . - which values can count hold
after both of the threads have completed the execution? Why is this possible?

i n t loop = 10 ;
i n t count = 0 ;

void ∗ h e l l o () {
f o r (i n t i = 0 ; i < loop ; i++) {

count++;
}

}

Answer: The variable count can have a �nal value in the range [2, 20]. This
is since the ++ operation is not atomic. One thread can read the value, the
other do one or more updates and then the �rst overwrites the changes.

6.2 own stack [2 points]

If we divide a process in two threads, the two threads can read form each
others stacks - true or false? Motivate your answer.

Answer: True - the two threads share the address space and have the same
read and write privilege. The have their own stacks but nothing prevents
them (all though not advisable) to read or write to each others stacks.

6.3 total store order[2 points*]

How does total store order di�er from sequential consistency?

7

Name:

Answer: In sequential consistency all operations are executed in a total
order that preserves that process order. In total store order this only applies
to write operations, read operations do not have to be performed in the
process order. A read operation can be performed even if a write operation
to another memory location has not been performed.

7 File systems

7.1 zombies [2 points]

If one happens to remove the last link to a �le the �le becomes a so called
zombie �le - true or false? Motivate your answer.

Answer: False, a zombie is a terminated process where the mother process
has not yet collected the result. A �le is simply deleted when the last link is
removed.

7.2 bit maps [2 points]

When implementing a �le system we can dive a disk into: super block, bit
maps, inodes and data blocks. What are the bit maps used for?

Answer: The bit maps describe which inode and data blocks that are free
to use.

7.3 a directory [2 points*]

Which information does a directory contain and how is it represented? Descri-
be in terms of inodes and data blocks, which information is where? Draw a
simple picture that describes the structure.

Answer: A directory is represented by an inode. The inode contains general
information about the directory: when created, last modi�ed, owner, rights
etc. The inode also has one ore more pointers to data blocks that contain
a mapping from names to type and inodes. Each entry is a link to a �le
sub-directory, symbolic link etc.

8 Virtualization

8.1 user mode [2 points]

When virtualizing a complete operating system the virtualized operating
system will execute in user mode - true or false? Motivate your answer.

8

Name:

Answer: True, the operating system executes in user mode to allow all in-
terrupts to be controlled by the hypervisor that is supervising the virtualized
operating system.

8.2 emulators [2 points*]

A regular hypervisor is used to virtualize one or more operating systems
allowing all to run on the same hardware. The so called emulators, such as
QEMU, have an additional advantage - which?

Answer: They can virtualize another hardware than the emulator is running
on.

9 Implementation

9.1 memory map [2 points]

Below is a, somewhat shortened, printout of a memory mapping of a running
process. Brie�y describe the role of each segment marked with ???.

> cat /proc/13896/maps

00400000-00401000 r-xp 00000000 08:01 1723260 .../gurka ???

00600000-00601000 r--p 00000000 08:01 1723260 .../gurka ???

00601000-00602000 rw-p 00001000 08:01 1723260 .../gurka ???

022fa000-0231b000 rw-p 00000000 00:00 0 [???]

7f6683423000-7f66835e2000 r-xp 00000000 08:01 3149003 .../libc-2.23.so ???

:

7ffd60600000-7ffd60621000 rw-p 00000000 00:00 0 [???]

7ffd60648000-7ffd6064a000 r--p 00000000 00:00 0 [vvar]

7ffd6064a000-7ffd6064c000 r-xp 00000000 00:00 0 [vdso]

ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]

Answer: The �rst three segments are: code, read-only data and global data
for the running process gurka. Then there is a segment for the heap. The seg-
ment marked with lib-2.23.so is a shard library. In the uppermost region
we �nd the segment of the stack.

9.2 execlp() [2 points*]

In the program below we call the library procedure execlp(). What will
this procedure do and when and in what order will �Humle� and �Dumle� be
written? Motivate your answer.

9

Name:

i n t main () {

i n t pid = fo rk () ;

i f (pid == 0) {
exec lp (" gurka " , "gurka " , NULL) ;
p r i n t f ("Humle\n ") ;

} e l s e {
wait (NULL) ;
p r i n t f ("Dumle\n ") ;

}
re turn 0 ;

}

Answer: The procedure exexlp() will replace the process memory segment
with the code and data from the program gurka. �Humle� will never be
printed unless execlp() fails. �Dumle� is written after the termination of
the program gurka.

9.3 modify the kernel [2 points]

If we should add a functionality to a Linux kernel, we must recompile the
kernel and restart the system - true or false? Motivate your answer.

Answer: False - you can load a kernel module into a running kernel using
the command insmod.

9.4 proc_create() [2 points*]

There are several ways in which we can communicate with at kernel module,
the code below shows one way. Here we initialize certain data structures that
then allow other processes to easily access the module. Which is the visible
interface that processes will use? Give a brief explanation.

s t a t i c i n t __init skynet_in i t (void) {
proc_create (" skynet " , 0 , NULL, &skynet_fops) ;
p r in tk (KERN_INFO "Skynet in c on t r o l \n ") ;
r e turn 0 ;

}

s t a t i c void __exit skynet_cleanup (void) {
remove_proc_entry (" skynet " , NULL) ;
p r in tk (KERN_INFO "I ' l l be back ! \ n ") ;

}

10

Name:

Answer: We register the module as a �le under /proc. Processes can now
use regular �le operations to communicate with the module.

9.5 a graph [2 points]

Assume that we do an experiment were we compare three methods to im-
plement a swapping algorithm i.e. to throw out pages from memory when
more frames are needed. In our experiment we have a virtual memory of 100
pages and simulate a memory of up to 100 frames. The experiment simulate
a sequence of memory operations with temporal locality.

In the diagram below you should plot justi�able graphs for the following
three strategies:

• RND: choose a page by random

• OPT: choose a page that will not be used in a long time

• LRU: choose a page that has not been used for a long time

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

frames

h
it
ra
ti
o

11

Name:

Answer:

9.6 an expensive operation [2 points]

Below is a extract from a program that implements Least Recently Used

(LRU). The code shows why LRU is expensive to implement and why one
probably instead choose to approximate this strategy. What is the code doing
and when is it executed?

:
i f (entry−>present == 1) {

i f (entry−>next != NULL) {

i f (f i r s t == entry) {
f i r s t = entry−>next ;

} e l s e {
entry−>prev−>next = entry−>next ;

}
entry−>next−>prev = entry−>prev ;

entry−>prev = l a s t ;
entry−>next = NULL;

l a s t−>next = entry ;
l a s t = entry ;

}
} e l s e {

:
}

12

Name:

Answer: The code unlinks an entry and places it last in a list that should
be updated with the least used pages �rst. This operation must be done
every time a page is referenced.

9.7 tick-tack [2 points*]

When implementing the clock algorithm it is su�cient to have the list single
linked i.e. there is no need for a double linked list. Why can we manage with
a single linked list?

Answer: We never remove an element at random but always from the cur-
rent position of the dial. We can easily keep track of its position and its
immediate predecessor.

9.8 lock() [2 points]

Assume that we de�ne try() as the code below. The procedure __sync_-

val_compare_and_swap(int *loc, int old, int new) will in an atomic
operation compare the value of *loc and if it is equal to old write new in its
place. The procedure returns the value of *loc before the operation.

i n t t ry (v o l a t i l e i n t ∗mutex) {
re turn __sync_val_compare_and_swap(mutex , 0 , 1) ;

}

How can we implement a simple spin lock? Use the code below and assume
that we call lock() and unlock() with a pointer to a global lock that holds
0 in its unlocked state.

void l ock (v o l a t i l e i n t ∗mutex) {
:
:
:

}

void unlock (v o l a t i l e i n t ∗mutex) {
:
:
:

}

Answer:

void lock (v o l a t i l e i n t ∗mutex) {
whi l e (t ry (mutex) != 0) ;

}

13

Name:

void unlock (v o l a t i l e i n t ∗mutex) {
∗mutex = 0 ;

}

9.9 futex_wait() [2 points]

We can improve the characteristics of a spin lock by using so called futex. The
code that follows de�ned two procedures futex_wait() and futex_wake().

i n t futex_wait (v o l a t i l e i n t ∗ futexp) {
re turn s y s c a l l (SYS_futex , futexp , FUTEX_WAIT, 1 , NULL, NULL, 0) ;

}

void futex_wake (v o l a t i l e i n t ∗ futexp) {
s y s c a l l (SYS_futex , futexp , FUTEX_WAKE, 1 , NULL, NULL, 0) ;

}

What do these procedures do and how are they used?

Answer: The procedure futex_wait() will suspend the process if the lock
is still held. The procedure futex_wake() will wake one suspended process
(if there are any suspended).

9.10 list updates [2 points*]

Assume we have a single linked sorted list that we wish to update by adding
or removing elements. We want several threads to be able to perform opera-
tions in parallel and therefore implement a list where each cell is protected
by a lock. The operations require that we hold two locks when we remove an
item but this is easily implemented.

We can choose to use pthread_mutex_lock() to implement the lock ope-
rations but we could also use simple spin-locks. What is the advantage and
disadvantage of using spin-locks and how are the conditions changed if we
have more threads and less cores?

Answer: The advantage with spin-locks would be that the locks are held
for a short time and a taken lock is probably released in a few clock cycles.
If we spin we can avoid suspending a process. The down side is of course if
the process that holds the lock is suspended. If we increase the number of
threads or have fewer cores the risk for this increase which would then be an
argument against using spin-locks.

14

