Chordy: a distributed hash table
Johan Montelius

October 16, 2014

Introduction

In this assignment you will implement a distributed hash table following the
Chord scheme. In order to understand what you’re about to do you should
have a basic understanding of Chord and preferably have read the original
paper.

The first implementation will only maintain a ring structure; we will
be able to add nodes in the ring but not add any elements to the store.
Once we have a growing ring we will introduce a store where key-value pairs
can be added. Adding and searching for values will only introduce a few
new messages and one parameter to represent the store. When we have the
distributed store we can perform some benchmarks to see if the distribution
actually gives us anything.

Moving forward we will add failure detection to the system. Each node
will keep track of the liveness of its successor and predecessor, if they fail
the ring must be repaired. If a predecessor dies we don’t do very much but if
our successor dies we have to contact the next in line. In the presentation of
Chord one will keep a list of potential successors but to keep things simple
we will only keep track of one more successor.

Maintaining the ring in the face of failures is of course all well but if
a node dies we will loose information. To solve this problem we will have
to replicate the values in the store. We will introduce a simple replication
scheme that might take care of some problems but does it actually work.

The Chore architecture also define a routing table, called fingers, for
each node. The routing table will allow us to find any given key in log(n)
hops. This is of course important if we have a large ring. In a network of
twenty nodes it will however be quite manageable to rely on the successor
pointers only.

If you also want to implement mutable objects you will be faced with a
challenge. How do you consistently update an object if it’s replicated? Some
objects or nodes might be unavailable during node insertion and failures. To
solve this you will have to do some more reading.

1 Building a ring

Start this project implementing a module nodel. It will be our first imple-
mentation that only handles a growing ring. It could be good to keep this

very simple, to see what functionality introduces new messages.

1.1 keys

Chord uses hashing of names to create unique keys for objects. We will not
use a hash function, instead a random number generated is used when a new
key is generated. We will thus not have any “names” only keys. A node
that wants to join the network will generate a random number and we will
hope that this is unique. This is ok for all of our purposes.

In a module key implement two functions: generate() and between(Key,
From, To). The function generate/0 will simply return a random number
from 1 to 1.000.000.000 (30-bits), that will be large enough for our test.
Using a hash function such as SHA-1 would give us 160 bits and allow us to
have human readable names on object but let’s keep things simple. Use the
Erlang module random to generate numbers.

The between/3 function will check if a Key is between From and To or
equal to To, this is called a partly closed interval and is denoted (From,To].

Remember that the we're dealing with a ring so it could be that From
is larger than To. What does that mean and how do you handle it? Also,
From could be equal to To and we will interpret this as the full circle i.e.
anything is in between.

1.2 the node

A node will have the following properties: a key, a predecessor and a suc-
cessor (remember that we will wait with the store until later). We need to
know the key values of both the predecessor and the successor so these will
be represented by a tuples {Key, Pid}.

The messages we need to maintain the ring are:

{key, Qref, Peer} : a peer needs to know our key

{notify, New} : a new node informs us of its existence

{request, Peer} : a predecessor needs to know our predecessor

{status, Pred} : our successor informs us about its predecessor

If you read the original paper that describes the Chord architecture they
of course describe it a bit different. They have a pseudo code description
where they call functions on remote nodes. Since we need to build everything
on message passing, and need to handle the case where there is only one node
in the ring pointing to itself, we need to make things asynchronous.

If we delay all the tricky decision to sub-routines the implementation of
the node process could look like this:

node(Id, Predecessor, Successor) —->
receive
{key, Qref, Peer} ->
Peer ! {Qref, Id},
node (Id, Predecessor, Successor);

{notify, New} ->
Pred = notify(New, Id, Predecessor),
node(Id, Pred, Successor);

{request, Peer} ->
request (Peer, Predecessor),
node(Id, Predecessor, Successor);

{status, Pred} —>
Succ = stabilize(Pred, Id, Successor),
node(Id, Predecessor, Succ);
end.

You could also include handlers to print out some state information, to
terminate and a catch all clause in case some strange messages are sent.

1.3 stabilize

The periodic stabilize procedure will consist of a node sending a {request,
self ()} message to its successor and then expecting a {status, Pred} in
return. When it knows the predecessor of its successor it can check if the ring
is stable or if the successor needs to be notifies about its existence through
a {notify, {Id, self()} message.

Below is a skeleton for the stabilize/3 procedure. The Pred argument
is ours successors current predecessor. If this i nil we should of course
inform it about our existence. If it is pointing back to us we don’t have to
do anything. If it is pointing to itself we should of course notify it about
our existence.

If it’s pointing to another node we need to be careful. The question is
if we are to slide in between the two nodes or if we should place ourselves
behind the predecessor. If the key of the predecessor of our successor (Xkey)
is between us and our successor we should of course adopt this node as our
successor and run stabilization again. If we should be in between the nodes
we inform our successor of our existence.

stabilize(Pred, Id, Successor) ->
{Skey, Spid} = Successor,
case Pred of

nil ->

{I4d, _} —>

{Skey, _} —>

{Xkey, Xpid} ->
case key:between(Xkey, Id, Skey) of
true ->

false >

end
end.

If you study the Chord paper you will find that they explain things
slightly different. We use our key:between/3 function that allows the key
Xkey to be equal to Skey, not strictly according to the paper. Does this
matter? What does it mean that Xkey is equal to Skey, will it ever happen?

1.4 request

The stabilize procedure must be done with regular intervals so that new
nodes are quickly linked into the ring. This can be arranged by starting a
timer that sends a stabilize message after a specific time.

The following function will set up a timer and send the request message
to the successor after a predefined interval. In our scenario we might set the
interval to be 1000 ms in order to slowly trace what messages are sent.

schedule_stabilize() ->
timer:send_interval(?Stabilize, self(), stabilize).

The procedure schedule_stabilize/1 is called when a node is created.
When the process receives a stabilize message it will call stabilize/1
procedure.

stabilize ->
stabilize(Successor),
node (Id, Predecessor, Successor);

The stabilize/1 procedure will then simply send a request message
to its successor. We could have set up the timer so that it was responsible
for sending the request message but then the timer would have to keep track
of which node was the current successor.

stabilize({_, Spid}) ->
Spid ! {request, self()}.

The request message is picked up by a process and the request/2 pro-
cedure is called. We should of course only inform the peer that sent the
request about or predecessor as in the code below. The procedure is over
complicated for now but we will later extend it to be more complex.

request (Peer, Predecessor) ->
case Predecessor of
nil ->
Peer ! {status, nil};
{Pkey, Ppid} ->
Peer ! {status, {Pkey, Ppid}}
end.

What are the pros and cons of a more frequent stabilizing procedure?
What is delayed if we don’t do stabilizing that often?

1.5 notify

Being notified of a node is a way for a node to make a friendly proposal that
it might be our proper predecessor. We can not take their word for it, so we
have to do our own investigation.

notify({Nkey, Npid}, Id, Predecessor) ->
case Predecessor of
nil ->

{Pkey, _} —>
case key:between(Nkey, Pkey, Id) of
true —>

false —>

end
end.

If our own predecessor is set to nil the case is closed but if we already
have a predecessor we of course have to check if the new node actually should
be our predecessor or not. Do we need a special case to detect that we’re
pointing to ourselves?

Do we have to inform the new node about our decision? How will it
know if we have discarded its friendly proposal?

1.6 starting a node

The only thing left is how to start a node. There are two possibilities: either
we are the first node in the ring or we’re connecting to an existing ring. We’ll
export two procedures, start/1 and start/2, the former will simply call
the later with the second argument set to nil.

start(Id) ->
start(Id, nil).

start(Id, Peer) —>
timer:start(),
spawn(fun() -> init(Id, Peer) end).

In the init/2 procedure we set our predecessor to nil, connect to our
successor and schedule the stabilizing procedure; or rather making sure that
we send a stabilize message to ourselves. This also has to be done even
if we are the only node in the system. We then call the node/3 procedure
that implements the message handling.

init(Id, Peer) ->
Predecessor = nil,
{ok, Successor} = connect(Id, Peer),
schedule_stabilize(),
node(Id, Predecessor, Successor).

The connect/2 procedure is divided into two cases; are we the first node
or trying to connect to an existing ring. In either case we need to set our
successor pointer. If we’re all alone we are of course our own successors. If
we're connecting to an existing ring we send a key message to the node that
we have been given and wait for a reply. Below is the skeleton code for the
connect/2 procedure

connect(Id, nil) ->
{ok, };
connect(Id, Peer) ->
Qref = make_ref(),
Peer ! {key, Qref, self()},
receive
{Qref, Skey} ->

after 7Timeout ->
io:format("Time out: no response™n",[])
end.

Notice how the unique reference is used to trap exactly the message we’re
looking for. It might be over-kill in this implementation but it can be quite
useful in other situations. Also note that if we for some reason do not receive
a reply within some time limit (for example 10s) we return an error.

What would happen if we didn’t schedule the stabilize procedure? Would
things still work?

The Chord system uses a procedure that quickly will bring us closer
to our final destination but this is not strictly needed. The stabilization
procedure will eventually find the right position for us.

1.7 does it work

Do some small experiments, to start with in one Erlang machine but then
in a network or machines. When connecting nodes on different platforms
remember to start Erlang i distributed mode (giving a -name argument) and
make sure that you use the same cookie (-setcookie).

To check if the ring is actually connected we can introduce a probe
message.

{probe, I, Nodes, Time}

If the second element, I, is equal to the Id of the node, we know that we
sent it and can report the time it took to pass it around the ring. If it is not
our probe we simply forward it to our successor but add our own process
identifier to the list of nodes.

The time stamp is set when creating the probe, use erlang:now() to get
microsecond accuracy (this is local time so the times-tamp does not mean
anything on other nodes). There is also a function timer:now diff/2 that
can come in handy.

probe ->
create_probe(Id, Successor),
node(Id, Predecessor, Successor);

{probe, Id, Nodes, T} ->
remove_probe (T, Nodes),
node(Id, Predecessor, Successor);

{probe, Ref, Nodes, T} —->
forward_probe(Ref, T, Nodes, Id, Successor),
node(Id, Predecessor, Successor);

If you run things distributed you must of course register the first node
under a name, for example node. The remaining nodes will then connect to
this node using for example the adress:

{node, ’chordy@192.168.1.32°}

The connection procedure will send a name to this registered node and
get a proper process identifier of a node in the ring. If we had machines
registered in a DNS server we could make this even more robust and location
independent.

2 Adding a store

We will now add a local store to each node and the possibility to add and
search for key-value pairs. Create a new module, node2, from a copy of
nodel. We will now add and do only slight modifications to or existing
code.

2.1 a local storage

The first thing we need to implement is a local storage. This could easily
be implemented as a list of tuples {Key, Value}, we can then use the key
functions in the 1ists module to search for entries. Having a list is of course
not optimal but will do for our experiments.

We need a module storage that implements the following functions:

e create(): create a new store

e add(Key, Value, Store): add a key value pair, return the updated
store

e lookup(Key, Store): return a tuple {Key, Value} or the atom false

e split(From, To, Store) return a tuple {Updated, Rest} where the
updated store only contains the key value pairs requested and the rest
are found in a list of key-value pairs

e merge(Entries, Store): add a list of key-value pairs to a store

The split and merge functions will be used when a new node joins the
ring and should take over part of the store.

2.2 new messages

If the ring was not growing we would only have to add two new messages:
{add, Key, Value, Qref, Client} and {lookup, Key, Qref, Client}.
As before we implement the handlers in separate procedures. The proce-
dures will need information about the predecessor and successor in order to
determine if the message is actually for us or if it should be forwarded.

{add, Key, Value, Qref, Client} ->
Added = add(Key, Value, Qref, Client,
Id, Predecessor, Successor, Store),
node (Id, Predecessor, Successor, Added);

{lookup, Key, Qref, Client} ->
lookup(Key, Qref, Client, Id, Predecessor, Successor, Store),
node(Id, Predecessor, Successor, Store);

The Qref parameters will be used to tag the return message to the
Client. This allows the client to identify the reply message and makes it
easier to implement the client.

2.3 adding an element

To add a new key value we must first determine if our node is the node that
should take care of the key. A node will take care of all keys from (but not
including) the identifier of its predecessor to (and including) the identifier
of itself. If we are not responsible we simply send a add message to our
SuCCessor.

add(Key, Value, Qref, Client, Id, {Pkey, _}, {_, Spid}, Store) ->
CASE vttt ittt of
true ->
Client ! {Qref, ok},

false ->

end.

2.4 lookup procedure

The lookup procedure is very similar, we need to do the same test to de-
termine if we are responsible for the key. If so we do a simple lookup in
the local store and then send the reply to the requester. If it is not our
responsibility we simply forward the request.

lookup(Key, Qref, Client, Id, {Pkey, _}, Successor, Store) ->
CASE v iv ittt of
true ->
Result = storage:lookup(Key, Store),
Client ! {Qref, Result};
false —>
{_, Spid} = Successor,

end.

2.5 responsibility

Things are slightly complicate by the fact that new nodes might join the
ring. A new node should of course take over part of the responsibility and
must then of course also take over already added elements. We introduce
one more message to the node, {handover, Elements}, that will be used
to delegate responsibility.

{handover, Elements} ->
Merged = storage:merge(Store, Elements),
node(Id, Predecessor, Successor, Merged);

When should this message be sent? It’s a message from a node that has
accepted us as their predecessor. This is only done when a node receives and
handles a notify message. Go back to the implementation of the notify/3
procedure. Handling of a notify message could mean that we have to give
part of a store away; we need to pass the store as an argument also return
a tuple {Predecessor, Store}. The procedure notify/4 could look like
follows:

notify({Nkey, Npid}, Id, Predecessor, Store) ->
case Predecessor of
nil ->
Keep = handover(Id, Store, Nkey, Npid),

{Pkey, _} —>
case key:between(Nkey, Pkey, Id) of
true ->

false >

end
end.

So, what’s left is simply to implement the handover/4 procedure. What
should be done: split our Store based on the NKey. Which part should be
kept and which part should be handed over to the new predecessor? You
have to check how your split function works, remember that a store contains
the range (Pkey, Id], that is from (not including Pkey to (including) Id.
What part should be handed over to our new predecessor?

10

handover(Id, Store, Nkey, Npid) ->

{....,} = storage:split(Id, Nkey, Store),
Npid ! {handover, Rest},
Keep.

2.6 performance

If we now have a distributed store that can handle new nodes that are added
to the ring we might try some performance testing. You need to be a group
with several machine to do this. Assume that we have eight machines and
that we will use four in building the ring and four in testing the performance.

As a first test we can have one node only in the ring and let the four
test machines add 1000 elements to the ring and then do a lookup of the
elements. Does it take longer for one machine to handle 4000 elements rather
than four machines that do 1000 elements each. What is the limiting factor?

Implement a test procedure that adds a number of random key-value
pairs into the system and keeps the keys in a list. You should then be able
to do a lookup of all the keys and measure the time it takes. The lookup
test should be given the name of a node to contact.

Now what happens if we add another node to the ring, how does the
performance change? Does it matter if all test machines access the same
node? Add two more nodes to the ring, any changes? How will things
change if we have a ten thousand elements?

3 Handling failures

To handle failures we need to detect if a node has failed. Both the successor
and the predecessor need to detect this and we will use the Erlang built-in
procedure to monitor the health of a node. Start a new module node3 and
copy what we have from node2. As you will see we will not have to do large
changes to what we have.

3.1 successor of our successor

If our successor dies we need a way to repair the ring. A simple strategy is to
keep track of our successors successor; we will call this node the Next node.
A more general scheme is to keep track of a list of successors to make the
system even more fault tolerant. We will be able to survive from one node
crashing at a time but if two node in a row crashes we’re doomed. That’s
ok, it makes life a bit simpler.

Extend the node/4 procedure to a node/5 procedure, including a pa-
rameter for the Next node. The Next node will not change unless our
successor informs us about a change. Our successor should do so in the
status message so we extend this to {status, Pred, Nx}. The procedure

11

stabilize/3 must now be replaced by a stabilize/4 procedure that also
takes the new Nx node and returns not only the new successor but also the
new next node.

{status, Pred, Nx} ->
{Succ, Nxt} = stabilize(Pred, Nx, Id, Successor),
node(Id, Predecessor, Succ, Nxt, Store);

Now stabilize/4 need to do some more thinking. If our successor does
not change we should of course adopt the successor of our successor as our
next node. However, if we detect that a new node has sneaked in between us
and our former successor then ... yes then what? Do the necessary changes
to stabilize/4 so that it returns the correct successor and next node.

Almost done but who sent the status message? This is sent by the
request/2 procedure. This procedure must be changed in order to send the
correct message, a small change and your done.

3.2 failure detection

We will the erlang:monitor/2 procedures to detect failures. The procedure
returns a unique reference that can be used to determine which >DOWN’
message belong to which process. Since we need to keep track of both our
successor and our predecessor we will extend the representation of these
nodes to a tuple {Key, Ref, Pid} where the Ref is a reference produced
by the monitor procedure. To make the code more readable we add wrapper
functions for the built-in monitor procedures.

monitor (Pid) ->
erlang:monitor (process, Pid).

drop(nil) ->
ok;
drop(Pid) ->
erlang:demonitor(Pid, [flush]).

Now go through the code and change the representation of the prede-
cessor and successor to include also the monitor reference. In the messages
between node we still send only the two element tuple {Key, Pid} since the
receiving node has no use of the reference element of the sending node. When
a new nodes is adopted as successor or predecessor we need to de-monitor
the old node and monitor the new.

There are only four places where we need to create a new monitor refer-
ence and only two places where we de-monitor a node.

12

3.3 Houston we have a problem

Now to the actual handling of failures. When a process is detected as having
crashed (the process terminated, the Erlang machine died or the computer
stopped replying on heart beats) a message will be sent to a monitoring
process. Since we now monitor both our predecessor and successor we should
be open to handle both messages. Let’s follow our principle of keeping the
main loop free of gory details and handle all decisions in a procedure. The
extra message handler could then look like follows:

{’DOWN’, Ref, process, _, _} ->
{Pred, Succ, Nxt} = down(Ref, Predecessor, Successor, Next),
node(Id, Pred, Succ, Nxt, Store);

The Ref obtained in the *DOWN’ message must now be compare to the
saved references of our successor and predecessor. For clarity we break this
up into two clauses.

down(Ref, {_, Ref, _}, Successor, Next) ->

down (Ref, Predecessor, {_, Ref, _}, {Nkey, Npid}) ->

{Predecessor, {Nkey, Nref, Npid}, nil}.

If our predecessor died things are quite simple. There is no way for us
to find the predecessor of our predecessor but if we set our predecessor to
nil someone will sooner or later knock on our door and present them self
as a possible predecessor.

If our successor dies, things are almost as simple. We will of course adopt
our next-node as our successor and then only have to remember two things:
monitor the node and make sure that we run the stabilizing procedure.

You're done you have a fault tolerant distributed storage...... well almost,
if a node dies it will bring with it a part of the storage. If this is ok we could
stop here, if not we have to do some more work.

Another thing to ponder is what will happen if a node is falsely detected
of being dead? What will happen if a node has only been temporally un-
available (and in the worst case, it might think that the rest of the network
is gone). How much would you gamble in trusting the >DOWN’ message?

4 Replication

The way to maintain the store in face of dying nodes is of course to replicate
information. How to replicate is a research area of its own so we will only
do something simple that (almost) works.

13

4.1 close but no cigar

We can handle failures of one node at a time in our ring so let’s limit the
replication scheme to be on the same level. If a node dies its local store
should be replicated so it’s successor can take over the responsibility. Is
there then a better place to replicate the store than at the successor?

When we add an key-value element to our own store we also forward it
to our successor as a {replicate, Key, Value} message. Each node will
thus have a second store called the Replica where it can keep a duplicate
of its predecessors store. When a new node joins the ring it will as before
takeover part of the store but also part of the replica.

If a node dies it’s successor is of course responsible for the store held
by the node. This mean that the Replica should be merged with its own
Store. Sounds simple does it not there are however some small details that
makes our solution less than perfect.

4.2 the devil in the detail

What does it mean that a element has been added to the store. Can we
send a confirmation to the client and then replicate the element, what if we
fail? If we want to handle failures we should make sure that a confirmation
only is sent when an element has been properly added and replicated. This
should not be too difficult to implement, who should send the confirmation?

A client that does not receive a confirmation could of course choose to
re-send the message. What happens if the element was added the first time
but that the confirmation message was lost? Will we handle duplicates
properly?

Another problem has to do with a joining node in combination with
adding of a new value. You have to think about this twice before realizing
that we have a problem. What would a solution look like?

Are there more devils? Will we have a implementation with no obvious
faults or an implantation with obviously no faults? Take a copy of node3,
call it node4 and try to add a replication strategy.

5 Carrying on

There are more things that we could add or change and there is often not
only one way of doing things. It becomes a trade-off between properties that
we want and efficiency in the implementation. Sometimes the properties are
driving in opposite directions, such as high availability and consistence, and
one has to make up once mind what property is actually needed most.

14

5.1 routing

Routing is one thing that we have left out completely. If we only have twenty
nodes it is less of a problem but if we have hundred nodes it does become
important.

If network latencies are high (think global Internet distances) then we
need to do something. Should we even try to take network distances into
account and route to nodes that are network wise close to us (remember that
the ring is an over lay and does not say anything about network distance).

5.2 replication

Is one replica enough or should we have two or three replicas? On what
does this depend? It is of course related to how reliable nodes are and what
reliability we need to provide, is it also dependent on the number of nodes
in the ring?

Can we use the replicas for read operations and thus make use of the
redundancy. How are replicas found and can we distribute them in the ring
to avoid hot-spots?

5.3 mutable object

As long as we only have one copy of an object things are simple, but what if
we want to update objects and some replicas are not updated. Do we have
to use a two-phase-commit protocol to update all replicas in a consistent
way? Could we have a trade off between the expense of read and write
operations? How relaxed can we be and how does this relate to a shopping
cart?

6 Conclusions

If you have followed this tutorial implementation you should have a better
understanding of how distributed hash tables work and how they are imple-
mented. As you have seen its not that hard to maintain a ring structure
even in the face of failures. A distributed store also seams easy to implement
and replication could probably be solved. Consistency is a problem, can we
guarantee that added values never are lost (given a maximum number of
failed nodes).

When things get complicate to implement the performance might suffer.
What is the advantage of the distributed store, is it performance or fault
tolerance? What should we optimize if we have to choose between them.

15

