Distributed Systems Coordination

ID2201 e Coordination in a distributed system:

- no fixed coordinator

- no shared memory

S — failure of nodes and networks

coordination and agreement I e Coordination is often the problem of:
Johan Montelius — deciding who is to decide

- knowing who is alive.

Fundamental models Distributed algorithms
e Interaction model: e We will look at some distributed
- asynchronous or synchronous : algorithms and assume:

- that nodes are correct
- that messages are delivered

— Can we assume a node has crashed if it
does not reply?

e Failure model:
- Will nodes crash?
- Will crash nodes return to life?
- Is crashing the only failure?

Three sides of the same coin Distributed mutual exclusion

e Mutual exclusion o Safety:

- who is to enter a critical section - at most one process may be in critical
e Leader election section at a time

- who is to be the new leader © Liveness: ;
e Atomic multicast - Z';aargsii'} rg Ze

- which messages

Hich ord e Ordering:
— wWhich oraer - enter in request happened-before order

Evaluation Central service algorithm
e Number of messages needed. e Requirements? P
e Client delay: — safety .

- time to enter critical section - liveness
e Synchronization delay: oo - ordering =

— time between exit and enter '\ O <«—arant

release queue
R

Ordering - what is a request

A e —- ®
)
N
AT
B *—o @
\\\
VSO
4 A
Server e o —eo

Performance

® messages

— enter: request, grant
- exit: release

e client delay

- enter: message round trip plus waiting
in queue
— exit: constant (asynchronous message)

e synchronization delay

- round trip: release - grant

Ring-based algorithm

e Requirements

- safety
- liveness
— ordering ’.".\
@
@
o
@
\./

Ring-based algorithm

e Performance

— messages
— client delay
— synchronization delay ’.—V. .
@
@
.
@
“o*

Distributed algorithm Distributed algorithm
e Send request to all e Break deadlock
PEEers. — introduce priority
e When all peers have "2t ¥ o Fairness
acknowledged the @ % i & _ Ri @
request, enter the critical ® \. et Ricart and Agrawala ® \.
section. ® \ ® \
e What could go wrong? \ ¢ \ i
o ~O o ¥
@ @

Ricart and Agrawala Ricart and Agrawala
e Enter: e Requirements
- enter state waiting and broadcast a request {T,i} - safety, liveness, ordering
containing a Lamport time stamp T and process id -
I to all peers * Efficiency
- wait for replies from all peers — Messages
- enter state held - client delay

e Receiving a request {R,j}: - synchronization delay

- if held or (waiting and {T,i} < {R,j}) then queue
request, else reply ok

e EXit:
- reply to all queued requests

Maekawa's voting Maekawa's voting

e Why have permission from all peers? * Requirements

— it's sufficient to have votes from a - safety
subset S, - liveness
- ordering

— if no one can enter with the votes from
the complement of S.

e The subset S is called a quorum. "b

—

Maekawa's voting Election
e Efficiency e Many algorithms require a leader but if no
— messages node is assigned to be the leader one has
to be elected.

- client delay

- synchronization delay * Assumptions:

— any node can call an election, but it can
only call one at a time

— a node is either participant or non-
participant

- nodes have identifiers that are ordered

Election Ring-based election
- 12 1@~ .1‘i
e Requirements 1ig~” @ 234 @3
— safety: a participant is either non-decided or A @3 23@® ;
decided with P, a unique non crashed node 230 * ® s
— liveness: all nodes eventually participate and \ ®is 11.\ »
decide on a elected node 11.\. g
« Efficiency s " g™ .fi
- number of messages A @3
. 23@
— turnaround time: delay from call to close A y

Ring-based electionv_23 Ring-based election
14.—7 .1i 14." .li .
v-23¢ o3 A ®:3 * Requirements
23 @ ‘ 23.\ ‘ - safety
- liveness
11’\./\,_.151;8 11.\./.18 Wl o Efficiency
9 T 12 - messages: best case, worst case?
1;.’.\"33 1;'".\ ~ turnaround:

Multicast communication

e Multicast:

— Sending a message to a specified
group of n nodes.

e Atomic multicast:

— All nodes see the same messages in
the same order.

Requirements Basic multicast

e Integrity e To b-multicast a message m:
— a process delivers a message at most - send m to each process p
once and only deliver messages that have e If m is received:
been sent ~ b-deliver m

* Validity _ - e What was the problem?
— if a process multicast m then it will also

eventually deliver m
e Agreement

— if a process delivers m then all processes
in the group eventually delivers m

Ordered multicast Sequencer

e The problem with the basic multicast is Q Q Q
that multicast messages might arrive in | Q
different order at different nodes. Jrecten \ /

e Requirements: % i & ' \ i

— FIFO order: delivered in order as sent by the ot
sender

- Causal order: delivered in happened before m-cast m (rqnueeslf:ge

order

- Total order: delivered in_same order by all
processes

Distributed - ISIS Distributed - ISIS
e Multicast a message and request a sequence
number.

e When receiving a message, propose a sequence
number (including process id) and place in an
ordered hold-back queue.

e After collecting all proposals, select the highest
and multicast agreement.

e When receiving agreement tag message as
agreed and reorder hold-back queue.

o If first message in queue is decided then deliver. {request, m1,}

Distributed - ISIS Distributed - ISIS

{proposal, m1, 1
{proposal, m1, 2}

proposal, m1, 3}
{assign, m1, 3}

the hold-back queue Causal ordering
Ideliver e How can we implement casual ordering?

- multicast vector clock holds number of
multicast operations

{m1, proposed <2,i>}

{m2, agreed <3,e>} What will the agreed - tflslg Iczach multicast message with multicast
cloc
m r <3 k> sequence number be? _ _
{m3, agreed <3, _} - hold b-delivered messages until clock of
) {m4, proposed <4,i>} message is less (modulo sender) than own
What happened here {mb5, proposed <5,i>} current message clock

- update own message clock
e Only multicasted messages are counted.

Summary

e Coordination in distributed systems is
problematic.

e Three sides of the same coin:
- mutual exclusion
- leader election
— atomic multicast
e If nodes fail
- next lecture

