
Operating Systems ID1206

(ID2200/06 6hp)

Exam: example of new structure

HT19

Instruction

� You are, besides writing material, only allowed to bring one self hand
written A4 of notes. The notes are handed in and can not be reused.

� All answers should be written in these pages, use the space allocated
after each question to write down your answer.

� Answers should be written in Swedish or English.

� You should hand in the whole exam and the hand written page of
notes. No additional pages should be handed in.

Grades

� Fx: 7 points of 10 in the basic part

� E: 8 points of 10 in the basic part

Higher grade is given based on the result on the second part

� D: two passed

� C: three passed

� B: four passed

� A: all passed

1

Name: Persnr:

1 stack or heap [2 points]

What is done in the procedure below and where should gurka be allocated?
Why? Complete the code so that gurka is allocated space.

int *tomat(int *a, int *b) {

// allocate room for gurka

*gurka = *a + *b;

return gurka;

}

2

Name: Persnr:

2 fork() [2 points]

What is printed when we run the program below, what alternatives exist
and why do we get this result?

i n t g l oba l = 17 ;

i n t main () {
i n t pid = fo rk () ;
i f (pid == 0) {

g l oba l++;
} e l s e {

g l oba l++
wait (NULL) ;
p r i n t f (" g l oba l = %d \n" , g l oba l) ;

}
re turn 0 ;

}

3

Name: Persnr:

3 __sync_val_compare_and_swap() [2 points]

We can implement a spin lock in GCC as shown below. The lock is imple-
mented using a machine instruction that atomically will read the content
of a memory location and, if it is equal to our requirement, replace it with
a new value. In the implementation below we represent an open lock with
the value 0; if the lock is open we write a 1 in the location and return 0,
otherwise we return the value found (that then should be 1).

Assume that we use the lock to synchronize two threads on a machine with
only one core; what is then the disadvantage that we will have? How could
we mitigate the problem?

in t t ry (v o l a t i l e i n t *mutex) {
re turn __sync_val_compare_and_swap(mutex , 0 , 1) ;

}

void lock (v o l a t i l e i n t *mutex) {
whi l e (t ry (mutex) != 0) { }

}

void r e l e a s e (v o l a t i l e i n t *mutex) {
*mutex = 0 ;

}

4

Name: Persnr:

4 a stack, a bottle and.. [2 points]

You have written the program below to examine what is on the stack.

void zot(unsigned long *stop) {

unsigned long r = 0x3;

unsigned long *i;

for(i = &r; i <= stop; i++){ printf("%p 0x%lx\n", i, *i); }

}

void foo(unsigned long *stop) {

unsigned long q = 0x2;

zot(stop);

}

int main() {

unsigned long p = 0x1;

foo(&p);

back:

printf(" p: %p \n", &p);

printf(" back: %p \n", &&back);

return 0;

}

This is the print out. Explain what is found at the locations indicated by
arrows.

0x7ffca03d1748 0x3

0x7ffca03d1750 0x7ffca03d1750

0x7ffca03d1758 0xb93d7906926a7d00

0x7ffca03d1760 0x7ffca03d1790 <-------

0x7ffca03d1768 0x55cdac31d78c <-------

0x7ffca03d1770 0x7ffca03d17d8

0x7ffca03d1778 0x7ffca03d17b0

0x7ffca03d1780 0x1

0x7ffca03d1788 0x2

0x7ffca03d1790 0x7ffca03d17c0

0x7ffca03d1798 0x55cdac31d7c2

0x7ffca03d17a0 0x55cdac31d810

0x7ffca03d17a8 0x12acac31d5f0

0x7ffca03d17b0 0x1

p: 0x7ffca03d17b0

back: 0x55cdac31d7c2

5

Name: Persnr:

5 library call vs system call [2 points]

An operating system that implements POSIX should provide speci�ed func-
tionality to a user process. Is this provided by system calls, library procedures
or a combination of both? Explain the di�erence between system calls and
procedure calls and which parts belong to the operating system.

6

Name: Persnr:

6 from one to the ...[P/F]

Assume that we have two programs, ones and add2, implemented as bellow.
The call to scanf("\%d", \&in) will read from stdin and parse a number
that is then stored in \&in. The procedure either returns 1, if it manages to
read number, or EOF. The call to printf() will write the number to stdout.

/* ones . c */
#inc lude <s t d l i b . h>
#inc lude <s td i o . h>

in t main () {

f o r (i n t n = 5 ; n > 0 ; n−−) {
p r i n t f ("%d\n" , n) ;

}

re turn 0 ;
}

/* add2 . c */
#inc lude <s t d l i b . h>
#inc lude <s td i o . h>

in t main () {

i n t in ;
i n t r e s u l t = scan f ("%d" , &in) ;

whi l e (r e s u l t != EOF) {
p r i n t f ("%d\n" , in +2);
r e s u l t = scan f ("%d" , &in) ;

}

re turn 0 ;
}

You have a Linux computer and all possible programs. How would you in
the simplest possible way make the output from the �rst program, ones, be
read by the the other program add2.

7

Name: Persnr:

7 Scheduling [P/F]

Assume that we have a scheduler that implements shortest job �rst. We have
four jobs described below as <arrive at, execution time > in ms. Draw a time
diagram and specify the turnaround time for each of the jobs.

� J1 : <0,40>

� J2 : <0,30>

� J3 : <10,10>

� J4 : <20,30>

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

J1:

J2:

J3:

J4:

8

Name: Persnr:

8 you win some,you loose some [P/F]

Assume that we have a paged virtual memory with a page size of 4Ki byte.
Assume that each process has four segments (for example: code, data, stack,
extra) and that these can be of arbitrary but given size. How much will the
operating system loose in internal fragmentation?

9

Name: Persnr:

9 paged memory with 64 byte pages [P/F]

You have been asked to propose an architecture for a processor that should
have a paged virtual memory with the page size as small as 64 byte. The
processor is a 16 bit processor and the virtual address space should be 216

bytes.

Propose a scheme that uses a hierarchical page table based on pages of 64
Ki byte and explain how the address translation is done.

10

Name: Persnr:

10 log-based fs [P/F]

In a log-based �le system we write all changes in a continuous log without
changing the existing data blocks that has been allocated to a �le. We will
sooner or later run out of blocks and need to reclaim blocks that are no
longer used.

How do we keep track of which blocks that can be reused and what do we
do to reclaim the blocks?

11

