
Operating Systems ID1206

2020 01 07

Instruction

� You are, besides writing material, only allowed to bring one self hand
written A4 of notes. The notes are handed in and can not be reused.

� All answers should be written in these pages, use the space allocated
after each question to write down your answer.

� Answers should be written in Swedish or English.

� You should hand in the whole exam and the hand written page of
notes. No additional pages should be handed in.

Grades

The exam is divided into two parts, one basic part consisting of �ve questions
and one part for higher grades also consisting of �ve questions.

To pass, grade E, the basic part should be completed with the result below.
For a higher grade, two or more of the �ve advanced questions should be
answered correctly.

� Fx: 7 points of 10 in the basic part

� E: 8 points of 10 in the basic part

Higher grade is given based on the result o� the second part.

� D: two passed

� C: three passed

� B: four passed

� A: all passed

1

Name: Persnr:

Answer: The provided answers are not necessarily answers that would result
in full points, longer explanations could be required.

1 swap a context [2 points]

An interesting experiment is to save the current context and then later install
it. This is done using the system calls getcontext() and swapcontext().

The function getcontext(ucontext_t *ucp) initializes the structure

pointed at by ucp to the currently active context.

The swapcontext(ucontext_t *oucp, const ucontext_t *ucp) function

saves the current context in the structure pointed to by oucp, and

then activates the context pointed to by ucp.

What is the result of executing the program below?

volatile int done = 0;

int main() {

ucontext_t one;

ucontext_t two;

getcontext(&one);

printf("done = %d\n", done);

if(!done) {

done = 1;

printf(" - gurka -\n");

swapcontext(&two, &one);

printf(" - tomat -\n");

} else {

printf(" - salad -\n");

swapcontext(&one, &two);

printf(" - morot -\n");

}

printf(" - potät -\n");

return 0;

}

2

Name: Persnr:

Answer:

done = 0

- gurka -

done = 1

- salad -

- tomat -

- potät -

3

Name: Persnr:

2 fork() [2 points]

Below you �nd some skeleton code that does a fork(). The program con-
tinues as two processes that will do di�erent things. Complete the code so
that the two sections are executed in the di�erent processes and so that the
�nal code is only executed when the child has terminated.

i n t main () {

// th ing s we both do

i n t pid = fo rk () ;

// executed by ch i l d p roce s s
:
:
r e turn 0 ;

// executed by the parent p roce s s
:
:

// executed only when the ch i l d has terminated
:
:

r e turn 0 ;
}

Answer:

i n t main () {
:
i f (pid == 0) {
// ch i l d
re turn 0 ;

} e l s e {
// mother

}
wait (NULL) ;
// a f t e r

}

4

Name: Persnr:

3 Threads and memory [2 points]

Below you �nd a image of the virtual address space of a process and how it is
mapped to the physical memory. If the process creates another thread using
a call to pthread_create(), the image will change. Draw how the virtual
and physical memory will change.

Physical memory

Process A: virtual space

code data stack kernel

Answer: A new stack is created in the virtual memory and is then mapped
to a free segment in memory.

5

Name: Persnr:

4 a stack, a bottle and.. [2 points]

You have written the program below to examine what is on the stack with
the print out as follows.

void zot(unsigned long *stop) {

unsigned long r = 0x3;

unsigned long *i;

for(i = &r; i <= stop; i++){ printf("%p 0x%lx\n", i, *i); }

}

void foo(unsigned long *stop) {

unsigned long q = 0x2;

zot(stop);

}

int main() {

unsigned long p = 0x1;

foo(&p);

back:

printf(" p: %p \n", &p);

printf(" back: %p \n", &&back);

return 0;

}

0x7fff2f14cf58 0x3

0x7fff2f14cf60 0x7fff2f14cf60

0x7fff2f14cf68 0xf3331713173eab00

0x7fff2f14cf70 0x7fff2f14cfa0

0x7fff2f14cf78 0x560ced18173c

0x7fff2f14cf80 0x1

0x7fff2f14cf88 0x7fff2f14cfb0

0x7fff2f14cf90 0x7f0d7750b9a0

0x7fff2f14cf98 0x2

0x7fff2f14cfa0 0x7fff2f14cfc0

0x7fff2f14cfa8 0x560ced18176a

0x7fff2f14cfb0 0x1

p: 0x7fff2f14cfb0

back: 0x560ced18176a

Point out where the stack base of zot is and describe what is found if we
add 24 bytes (hex 18) to the base.

Answer: The base is located on 0x7fff2f14cf70 and 24 bytes above this

6

Name: Persnr:

position we �nd 0x7fff2f14cfb0 which is the adress of the variable p in
main().

7

Name: Persnr:

5 a concurrent bu�er [2 points]

Below you �nd the code that removes a value from a bu�er that can be
accesses by several threads. Implement the corresponding procedure set(int
i) that adds an element to the bu�er.

volatile int buffer = 0;

volatile int empty = TRUE;

pthread_cond_t added, removed;

pthread_mutex_t global;

int get() {

int val;

pthread_mutex_lock(&global);

while(empty) {

pthread_cond_wait(&added, &global);

}

val = buffer;

empty = TRUE;

pthread_cond_signal(&removed);

pthread_mutex_unlock(&global);

return val;

}

Answer:

void set(int i) {

pthread_mutex_lock(&global);

while(!empty) {

pthread_cond_wait(&removed, &global);

}

buffer = i;

empty = FALSE;

pthread_cond_signal(&added);

pthread_mutex_unlock(&global);

}

8

Name: Persnr:

6 Scheduling [P/F]

Assume that we have a scheduler that implements shortest job �rst. We have
four jobs described below as <arrive at, execution time > in ms. Draw a time
diagram and specify the turnaround time for each of the jobs.

Answer:

� J1 : <0,40> 110 ms

� J2 : <0,30> 30 ms

� J3 : <10,10> 30 ms

� J4 : <20,30> 50 ms

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

J1:

J2:

J3:

J4:

9

Name: Persnr:

7 paged memory with 64 byte pages [P/F]

You have been asked to propose an architecture for a processor that should
have a paged virtual memory with the page size as small as 64 byte. The
processor is a 16 bit processor and the virtual address space should be 216

bytes.

Propose a scheme that uses a hierarchical page table based on pages of 64
byte and explain how the address translation is done.

Answer: One proposal is to use an o�set of 6 bits and then have two levels
in the tree with an index of 5 bits on each level. We need 6 bits as o�set to
address 64 bytes. The 5 bit used as index would mean that we could have
32 elements in a page table. If we encode each entry as two bytes we can
encode a table in a page of 64 bytes. Using two bytes as an entry should be
su�cient, we can use 10 bits for frame number and 6 bits for �ags etc. This
would give us a physical space of 64 Ki byte.

10

Name: Persnr:

8 a simple fs [P/F]

Assume we have a simple �le system, built using inodes and data blocks.
Draw how we can represent a folder and two �les, foo.txt of 5000 bytes
and bar.txt of 200 bytes using these components. The folder should contain
links to the two �les. Describe what information is found where and the
assumptions you make.

� �le size

� �le owner

� links from name to �les

� number of links to �le

� read and write rights of �le

� content of �le

Answer:

The �les are represented by an inode with a pointer to as many blocks as
needed. If data blocks are 4 Ki byte, bar.txt would need one block and
foo.txt would need two blocks. The inodes would hold: size, owner, number
of links and access rights. The data blocks would of course hold the content
of the �les.

The map would be represented by an inode holding a reference to one data
block. The data block would contain a mapping between the named (bb-
ar.txtänd foo.txt") and the inode numbers.

11

Name: Persnr:

9 malloc and free [P/F]

Assume that you're looking through an implementation of malloc where you
know that the free blocks are kept in a single linked list (flist in the code
below). The blocks (chunk) have one �eld with its size and one pointer to
the next block in the list. There is a function after() that given a block
locates the neighboring block in memory. You're looking at the procedure
insert() below that adds a block to the free-list, but what more does it do?

Explain what the code is doing and point to the relevant sections that do
what you describe.

void insert(chunk *chnk) {

chunk *aftr = after(chnk);

chunk *next = flist;

chunk *prev = NULL;

while(next != NULL) {

if(chnk == after(next)) {

next->size = next->size + sizeof(chunk) + chnk->size;

if(prev != NULL) {

prev->next = next->next;

} else {

flist = next->next;

}

chnk = next;

}

if(next == aftr) {

chnk->size = chnk->size + sizeof(chunk) + next->size;

if(prev != NULL) {

prev->next = next->next;

} else {

flist = next->next;

}

next = next->next;

} else {

prev = next;

next = next->next;

}

}

chnk->next = flist;

flist = chnk;

return;

}

12

Name: Persnr:

Answer: The prcedure searches through the freelist for free blocks tha are
immediate before and/or after (in address order) the block being inserted. If
this is the case the blocks are merged into a larger block.

13

Name: Persnr:

10 Hello from a kernel module [P/F]

You have implemented a small kernel module and added it using insmod.
The module is written so that one can obtain information, in this case the
string �Hello, hello :-)\n� but how do we get this? Describe what you would
do to communicate with the module and receive the string as a reply.

static int hello_open(struct inode *inode, struct file *file);

static const struct file_operations hello_fops = {

.owner = THIS_MODULE,

.open = hello_open,

.read = seq_read,

.llseek = seq_lseek,

.release = single_release,

};

static int hello_show(struct seq_file *m, void *v) {

seq_printf(m, "Hello, hello :-)\n");

return 0;

}

static int hello_open(struct inode *inode, struct file *file) {

return single_open(file, hello_show, NULL);;

}

static int __init hello_init(void) {

proc_create("hello", 0, NULL, &hello_fops);

printk(KERN_INFO "Hello in control\n");

return 0;

}

static void __exit hello_cleanup(void) {

remove_proc_entry("hello", NULL);

printk(KERN_INFO "I'll be back!\n");

}

module_init(hello_init);

module_exit(hello_cleanup);

Answer: Simplest way would be to, in a terminal, write:

cat /proc/hello

14

