
Operating Systems ID1206

(ID2200/06 6hp)

Exam

2019-04-16 14:00-18:00

Instruction

� You are, besides writing material, only allowed to bring one self hand
written A4 of notes. The notes are handed in and can not be reused.

� All answers should be written in these pages, use the space allocated
after each question to write down your answer.

� Answers should be written in Swedish or English.

� You should hand in the whole exam and the hand written page of
notes. No additional pages should be handed in.

Grades

The exam is divided into a number of questions where some are a bit harder
than others. The harder questions are marked with a star points*, and will
give you points for the higher grades. The exam is thus divided into basic
points and points for higher grades. First of all make sure that you pass the
basic points before engaging with the higher points.

Questions with multiple sub-questions are normally awarded 2p for all correct
and 1p for one wrong answer.

Note that, of the 12 basic points only at most 11 are counted, the points for
higher grades will not make up for lack of basic points. The limits for the
grades are as follows:

� Fx: 6 basic points

� E: 7 basic points

� D: 8 basic points

� C: 10 basic points

� B: 11 basic points and 5 higher points

� A: 11 basic points and 8 higher points

The limits could be adjusted to lower values but not raised.

1

Name: Persnr:

Answer: The provided answers are not necessarily answers that would result
in full points, longer explanations could be required.

1 Processer

1.1 stack or heap [2 points]

What is done in the procedure below and where should gurka be allocated?
Why? Complete the code so that gurka is allocated space.

int *tomat(int *a, int *b) {

// allocate room for gurka

*gurka = *a + *b;

return gurka;

}

Answer: The function will return a pointer to a int that then must be
allocated on the heap. The variable gurka should point to a heap allocate
are large enough to store an int. This is achieved by:

int *gurka = (int*)malloc(sizeof(int));

2

Name: Persnr:

1.2 fork() [2 points]

What is printed when we run the program below, what alternatives exist
and why do we get this result?

i n t g l oba l = 17 ;

i n t main () {
i n t pid = fo rk () ;
i f (pid == 0) {

g l oba l++;
} e l s e {

g l oba l++
wait (NULL) ;
p r i n t f (" g l oba l = %d \n" , g l oba l) ;

}
re turn 0 ;

}

Answer: The output will be global = 18 once. The two processes will have
their own copy of the data segment and hence global. Since the updates are
independent of each other the �nal result in both cases is 18. Only the mother
process will output the result.

3

Name: Persnr:

1.3 __sync_val_compare_and_swap() [2 points*]

We can implement a spin lock in GCC as shown below. The lock is imple-
mented using a machine instruction that atomically will read the content
of a memory location and, if it is equal to our requirement, replace it with
a new value. In the implementation below we represent an open lock with
the value 0; if the lock is open we write a 1 in the location and return 0,
otherwise we return the value found (that then should be 1).

Assume that we use the lock to synchronize two threads on a machine with
only one core; what is then the disadvantage that we will have? How could
we mitigate the problem?

in t t ry (v o l a t i l e i n t *mutex) {
re turn __sync_val_compare_and_swap(mutex , 0 , 1) ;

}

void lock (v o l a t i l e i n t *mutex) {
whi l e (t ry (mutex) != 0) { }

}

void r e l e a s e (v o l a t i l e i n t *mutex) {
*mutex = 0 ;

}

Answer: If a thread takes the lock and is then suspended by the scheduler,
the scheduled thread could in the worst case spend its whole allotted time
slot spinning. We could yield the CPU, pthread_yield(), to allow the
suspended thread to continue its execution.

4

Name: Persnr:

2 Communication

2.1 from one to the ...[2 points]

Assume that we have two programs, ones and add2, implemented as bellow.
The call to scanf("\%d", \&in) will read from stdin and parse a number
that is then stored in \&in. The procedure either returns 1, if it manages to
read number, or EOF. The call to printf() will write the number to stdout.

/* ones . c */
#inc lude <s t d l i b . h>
#inc lude <s td i o . h>

in t main () {

f o r (i n t n = 5 ; n > 0 ; n−−) {
p r i n t f ("%d\n" , n) ;

}

re turn 0 ;
}

/* add2 . c */
#inc lude <s t d l i b . h>
#inc lude <s td i o . h>

in t main () {

i n t in ;
i n t r e s u l t = scan f ("%d" , &in) ;

whi l e (r e s u l t != EOF) {
p r i n t f ("%d\n" , in +2);
r e s u l t = scan f ("%d" , &in) ;

}

re turn 0 ;
}

You have a Linux computer and all possible programs. How would you in
the simplest possible way make the output from the �rst program, ones, be
read by the the other program add2.

Answer:

$> ./ones | ./add2

7

6

5

4

3

5

Name: Persnr:

2.2 Shared memory [2 points*]

We can make two processes share memory by memory map a �le in the two
processes using mmap. This memory will then be visible to both processes
and they can share it, almost as two threads can share the heap.

In the example below have the code to map a �le that can then be used by
several processes. We also have an extract from the man pages of mmap().

i n t fd = open (" shared " , O_CREAT | O_RDWR, S_IRUSR|S_IWUSR) ;

// make sure the f i l e i s 4K byte
l s e e k (fd , 4096 , SEEK_SET) ;
wr i t e (fd , "A" , 1) ;

char * area = (char *)mmap(NULL, 4096 , PROT_READ | PROT_WRITE, MAP_SHARED, fd , 0) ;
:
:

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset);

DESCRIPTION

mmap() creates a new mapping in the virtual address space of the calling

process. The starting address for the new mapping is specified in addr.

The length argument specifies the length of the mapping (which must be

greater than 0).

If addr is NULL, then the kernel chooses the (page-aligned) address at

which to create the mapping; this is the most portable method of creating

a new mapping. If addr is not NULL, then the kernel takes it as a hint

about where to place the mapping; on Linux, the mapping will be created

at a nearby page boundary. The address of the new mapping is returned as

the result of the call.

:

:

What would happen if we want to share linked data structures, what problem
would we have and how could we handle it?

Answer: The problem is that the shared memory can be mapped to di�erent
virtual memory ranges. That to which one process looks like a valid reference
is for the other process an address that is pointing somewhere completely
di�erent place. We can solve the problem by either making sure that the �le
is mapped to the same virtual addresses or encoding all references as o�sets
from the start of the area.

6

Name: Persnr:

3 Scheduling

3.1 Bonnie Tylor [2 points]

Assume that we have a scheduler that implements shortest job �rst. We have
four jobs described below as <arrive at, execution time > in ms. Draw a time
diagram and specify the turnaround time for each of the jobs.

Answer:

� J1 : <0,40> 110 ms

� J2 : <0,30> 30 ms

� J3 : <10,10> 30 ms

� J4 : <20,30> 50 ms

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

J1:

J2:

J3:

J4:

7

Name: Persnr:

3.2 stride scheduling [2 points*]

One could implement a stride scheduler by keeping all processes in list sorted
by pass value. The process that is �rst in the list is the one selected for
execution. When the process has executed it is inserted in the list again, at
what position should it be added.

Answer: Each process has a stride value that is added to its pass value.
When a process is added to the list it will inserted at the position determined
by its new pass value.

8

Name: Persnr:

4 Virtual memory

4.1 you win some ,you loose some [2 points]

Assume that we have a paged virtual memory with a page size of 4Ki byte.
Assume that each process has four segments (for example: code, data, stack,
extra) and that these can be of arbitrary but given size. How much will the
operating system loose in internal fragmentation?

Answer: Each segment will in average give rise to 2Ki byte of fragmentation.
This will in average mean 8 Ki byte per process.

If we for example have 100 processes this is a total loss of 800 Ki byte.

9

Name: Persnr:

4.2 paged memory with 64 byte pages [2 points*]

You have been asked to propose an architecture for a processor that should
have a paged virtual memory with the page size as small as 64 byte. The
processor is a 16 bit processor and the virtual address space should be 216

bytes.

Propose a scheme that uses a hierarchical page table based on pages of 64
Ki byte and explain how the address translation is done.

Answer: One proposal is to use an o�set of 6 bits and then have two levels
in the tree with an index of 5 bits on each level. We need 6 bits as o�set to
address 64 bytes. The 5 bit used as index would mean that we could have
32 elements in a page table. If we encode each entry as two bytes we can
encode a table in a page of 64 bytes. Using two bytes as an entry should be
su�cient given, we could use 10 bits for a frame number and leave 6 bits for
�ags etc.

10

Name: Persnr:

5 File systems and storage

5.1 what could happen [2 points]

Assume that we have simple �le system without a journal where we write
directly to bitmaps, inodes and data data blocks. Assume that we shall write
to a �le and that an additional data block is needed. When we perform the
operations on disc, we only succeed in updating the inode but not the bit
maps nor the selected data block before we crash.

If we do not detect the error when we restart, which problems will we have
and what could happen?

Answer: We will have a data block that is allocated to an inode but the
data block contains garbage and it is marked as free in the bit-maps. If we
read from the �le we will read garbage but worse if we use the data block
for another �le. This new �le will then write its data to the block that can
then be over written when we write to the �rst �le. If the data block is used
to represent a directory, this could of course result in total chaos.

11

Name: Persnr:

5.2 log-based fs [2 points*]

In a log-based �le system we write all changes in a continuous log without
changing the existing data blocks that has been allocated to a �le. We will
sooner or later run out of blocks and need to reclaim blocks that are no
longer used.

How do we keep track of which blocks that can be reused and what do we
do to reclaim the blocks?

Answer: We need to identify the used block in the very back of the log. If
we can move this block to the front of the log we can reused all consecutive
blocks up to the next used block that is now the last used block in the log.

We maintain an inverse mapping that for a given block will tell us the inode
of that the block belongs to. This means that we can determine if a block is
used an if so, to which inode it belongs. If we copy the last block in the log
to the front we also make a new copy of its inode with an updated sequence
of blocks.

12

