
Operating Systems ID1206

(ID2200/06 6hp)

Exam

2019-01-11 14:00-18:00

Instruction

� You are, besides writing material, only allowed to bring one self hand
written A4 of notes. The notes are handed in and can not be reused.

� All answers should be written in these pages, use the space allocated
after each question to write down your answer.

� Answers should be written in swedish or english.

� You should hand in the whole exam and the hand written page of
notes. No additional pages should be handed in.

Grades

The exam is divided into a number of questions where some are a bit harder
than others. The harder questions are marked with a star points*, and will
give you points for the higher grades. The exam is thus divided into basic
points and points for higher grades. First of all make sure that you pass the
basic points before engaging with the higher points.

Questions with multiple sub-questions are normaly awarded 2p for all correct
and 1p for one wrong answer.

Note that, of the 24 basic points only at most 22 are counted, the points for
higher grades will not make up for lack of basic points. The limits for the
grades are as follows:

� Fx: 12 basic points

� E: 13 basic points

� D: 16 basic points

� C: 20 basic points

� B: 22 basic points and 6 higher points

� A: 22 basic points and 10 higher points

The limits could be adjusted to lower values but not raised.

1

Name: Persnr:

1 Processer

1.1 stack or heap [2 points]

What is done in the procedure below and where should gurka be allocated?
Why? Complete the code so that gurka is allocated space.

void tomat(int *a, int *b) {

// allocate room for gurka

gurka = *a;

*a = *b;

*b = gurka;

}

1.2 fork() [2 points]

What is printed when we run the program below, what alternatives exist
and why do we get this result?

#inc lude <uni s td . h>
#inc lude <s td i o . h>
#inc lude <sys /wait . h>

void foo (i n t *x) {
(*x)++;
}

i n t main () {
i n t g l oba l = 17 ;
i n t pid = fo rk () ;
i f (pid == 0) {

foo (&g l oba l) ;
} e l s e {

foo (&g l oba l) ;
wait (NULL) ;
p r i n t f (" g l oba l = %d \n" , g l oba l) ;

}
re turn 0 ;

}

2

Name: Persnr:

1.3 a stack, a bottle and.. [2 points]

You have written the program below to examine what is on the stack.

void zot(unsigned long *stop) {

unsigned long r = 0x3;

unsigned long *i;

for(i = &r; i <= stop; i++){ printf("%p 0x%lx\n", i, *i); }

}

void foo(unsigned long *stop) {

unsigned long q = 0x2;

zot(stop);

}

int main() {

unsigned long p = 0x1;

foo(&p);

back:

printf(" p: %p \n", &p);

printf(" back: %p \n", &&back);

return 0;

}

This is the print out. Explain what is found at the locations indicated by
arrows.

0x7ffca03d1748 0x3

0x7ffca03d1750 0x7ffca03d1750

0x7ffca03d1758 0xb93d7906926a7d00

0x7ffca03d1760 0x7ffca03d1790 <-------

0x7ffca03d1768 0x55cdac31d78c <-------

0x7ffca03d1770 0x7ffca03d17d8

0x7ffca03d1778 0x7ffca03d17b0

0x7ffca03d1780 0x1

0x7ffca03d1788 0x2

0x7ffca03d1790 0x7ffca03d17c0

0x7ffca03d1798 0x55cdac31d7c2

0x7ffca03d17a0 0x55cdac31d810

0x7ffca03d17a8 0x12acac31d5f0

0x7ffca03d17b0 0x1

p: 0x7ffca03d17b0

back: 0x55cdac31d7c2

3

Name: Persnr:

1.4 the size of the block? [2 points]

When implementing free() we need to know the size of the block that should
be freed. How do we know the size? Draw and explain in the �gure below
what an implementation could look like.

i n t *new_table (i n t e lements) {
re turn (i n t *) mal loc (s i z e o f (i n t)* e lements) ;

}

i n t main () {)
i n t * t ab l e = new_table (2 4) ;
:
t ab l e [0] = 29 ;
t ab l e [1] = 13 ;
t ab l e [2] = 87 ;
:

f r e e (t ab l e) ;
r e turn 0 ;

}

Heap

29
13
87
:

table

4

Name: Persnr:

1.5 IDTR [2 points*]

When executing the INT instruction, there is a jump to given position in the
IDT. At the same time there is a transition from user mode to kernel mode.
This is done to allow the operating system to access its own data structures.
What prevents a user from changing IDTR so that it is referring to a table
that it controls?

1.6 library call vs system call [2 points*]

An operating system that implements POSIX should provide speci�ed func-
tionality to a user process. Is this provided by system calls, library procedures
or a combination of both? Explain the di�erence between system calls and
procedure calls and which parts belong to the operating system.

5

Name: Persnr:

2 Communication

2.1 a bu�er [2 points]

We implement a bu�er with one element as shown below (get() de�ned in
similar way). We will have several threads that produce and consume va-
lues from the bu�er. The bu�er is protected by a lock and the threads are
synchronized using a conditional variable. The program below does not work
(the calls to the pthread procedures are not even legal), why does it not work
(even if they where legal)?

#de f i n e TRUE 1
#de f i n e FALSE 0

v o l a t i l e i n t bu f f e r = 0 ;
v o l a t i l e i n t empty = TRUE;

pthread_mutex_t lock ;
pthread_cond_t s i g n a l ;

void put (i n t va lue) {
pthread_mutex_lock(& lock) ;
whi l e (TRUE) {

i f (empty) {
bu f f e r = value ;
empty = FALSE;
pthread_cond_signal(& s i g n a l) ;
pthread_mutex_unlock(& lock) ;
break ;

} e l s e {
pthread_mutex_unlock(& lock) ;
pthread_cond_wait(& s i g n a l) ;

}
}

}

6

Name: Persnr:

2.2 pipes [2 points]

The program below opens a pipe and iterates a number of times (ITE-
RATIONS) where each iteration sends a number (BURST) of messages
("0123456789"). We need to handle the situation where the receiving process
will not keep up with the sender; how do we implement �ow-control to avoid
bu�er over�ow?

i n t main () {
i n t mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
mkf i fo (" sesame " , mode) ;
// add f low con t r o l

i n t f l a g = O_WRONLY;
i n t pipe = open (" sesame " , f l a g) ;

/* produce qu i ck ly */
f o r (i n t i = 0 ; i < ITERATIONS; i++) {

f o r (i n t j = 0 ; j < BURST; j++) {
wr i t e (pipe , "0123456789" , 1 0) ;
// add f low con t r o l

}
p r i n t f (" producer burst %d done\n" , i) ;

}
p r i n t f (" producer done\n ") ;

}

2.3 SOCK_WHAT [2 points*]

When you create a socket you can choose to create a SOCK_STREAM or
SOCK_DGRAM. Which properties di�er and when is it an advantage to
choose one over the other.

7

Name: Persnr:

3 Scheduling

3.1 Bonnie Tylor [2 points]

Assume that we have a scheduler that implements shortest time to completion
�rst or as it is also called preemptive shortest job �rst. We have four jobs
described below as <arrive at, execution time > in ms. Draw a time diagram
and specify the turnaround time for each of the jobs.

� J1 : <0,40>

� J2 : <0,30>

� J3 : <10,10>

� J4 : <20,30>

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

J1:

J2:

J3:

J4:

8

Name: Persnr:

3.2 random not that wrong [2 points]

When benchmarking an implementation for swapping one found that a com-
pletely random algorithm worked better than expected. In the graph below
you can see the ratio of page hits and page references when the size of the
memory is changed. The process that runs uses 100 pages and the di�erent
runs shows how the hit ratio varies with the size of the memory.

One would expect 50% hit ratio when the memory is half of what the pro-
cess needs, but the hit ratio is better than this. What could a plausible
explanation to the observed behavior be?

9

Name: Persnr:

3.3 priority inversion [2 points*]

When one uses a scheduler with strict priority and uses locks at the same
time one can encounter some problems. Describe how a high priority process
can wait forever on a lower priority process although the scheduler guarantees
that higher priority processes always have precedence before lower priority
processes.

10

Name: Persnr:

4 Virtual memory

4.1 aproximate what? [2 points]

The clock algorithm, that is used to swap pages from memory, is described
as an approximation. What is it that it tries to approximate? Describe a
scenario when it does not do the right choice because of the approximation.

4.2 implement the buddy algorithm [2 points]

Assume that you should implment the buddy-algorithm for memory mana-
gement. To help you a function that locates the buddy of a block of size k
is given. Assume that all blocks are taged as either free ortaken and have a
�eld that gives the size of the block. Free blocks also have two pointers that
links the block in a double linked list of free blocks of its size.

Assume that you should free a block and have found its buddy - what do
you have to check before you can coalece the block with it's buddy? If the
blocks can me coaleced, what are the operations that you need to perform.

11

Name: Persnr:

4.3 x86_32 addressing 512 byte pages [2 points*]

Assume that someone wants to create a x86-architecture for embedded systems
where a large virtual address space is not essential. You're asked to propose
a virtual memory architecture.

The world length is 32 bits and we should of course use a paged virtual
memory. One requirement is that the page size is 512 bytes so this will set
some constraints on your solution.

How do we divide a virtual address using a hierarchical page table based on
a page size of 512 bytes? Give an example on how a virtual address should
be decoded; the virtual address space need not be fully 32 bits.

12

Name: Persnr:

5 File systems and storage

5.1 which goes where [2 points]

A �le has many properties; where do we �nd the below listen properties?
Connect the properties to the left with the correct locations to the right.
Several properties might be found at the same location but each property is
only found at one location (many to one).

property location

current write position • • open �le table entry
text name of �le • • inode of the �le

size of the �le • • data block of the �le
mapping of stdin • • directory that holds link to �le

• �le descriptor table

5.2 di�erent types [2 points]

A directory can hold links of di�erent types, describe the type of the following
�ve links:

drwxrwxr-x 2 johanmon johanmon 4096 dec 21 17:43 bar.doc

-rwxrwxr-x 1 johanmon johanmon 8464 dec 21 22:25 cave

lrwxrwxrwx 1 johanmon johanmon 7 dec 21 17:43 foo.pdf -> ./gurka

-rw-rw-r-- 1 johanmon johanmon 7 dec 21 17:42 gurka

prw-r--r-- 1 johanmon johanmon 0 dec 21 22:25 sesame

13

Name: Persnr:

5.3 journal based fs [2 points*]

Assume that we have a journal based �le system. Which of the following
statements below is/are correct and which ones is/are false - explain why.

� It is important the the transactions are checkpointed in the same order
as theyr were created.

� A transaction is considered to be valid ones it is written to the journal.

� In a restart after a crash, we must be careful not to checkpoint a
transaction twice.

14

