Operating Systems 1D1206
Fixam

2018-01-12 14:00-18:00

Instruction

e You are, besides writing material, only allowed to bring one self hand written A4
of notes.

e All answers should be written in these pages, use the space allocated
after each question to write down your answer.

e Answers should be written in Swedish or English.
e You should hand in the whole exam.

e No additional pages should be handed in.

Grades

The exam is divided into a number of questions where some are a bit harder
than others. The harder questions are marked with a star points*, and will
give you points for the higher grades. The exam is thus divided into basic
points and points for higher grades. First of all make sure that you pass the
basic points before engaging with the higher points.

Note that, of the 24 basic points only at most 22 are counted, the points for
higher grades will not make up for lack of basic points. The limits for the
grades are as follows:

e Fx: 12 basic points

e E: 13 basic points

e D: 16 basic points

e (C: 20 basic points

e B: 22 basic points and 6 higher points
e A: 22 basic points and 10 higher points

The limits could be adjusted to lower values but not raised.

Name: Persnr:

1 Processer

1.1 what is the problem? [2 points]

The code below might compile but we do a severe error. Which is the error
and what could happen?

#include <stdlib.h>
#define SOME 42 // should be 2..47
int *some_fibs() {

int buffer [SOME];

buffer[0] 0;
buffer([1] 1,

for(int i = 2; i < SOME; i++) {

buffer[i] = buffer[i-1] + buffer[i-2];
}
// buffer contains SOME Fibonacci numbers
return buffer;

Name: Persnr:

1.2 memory map [2 points]

Below is a, somewhat shortened, printout of a memory mapping of a running

process. Briefly describe the role of each segment marked with 777,

> cat /proc/13896/maps

00400000-00401000 r-xp 00000000 08:01 1723260
00600000-00601000 r--p 00000000 08:01 1723260
00601000-00602000 rw-p 00001000 08:01 1723260
022£a000-0231b000 rw-p 00000000 00:00 O

7£6683423000-7£66835€2000 r-xp 00000000 08:01

7££d60600000-7££d60621000 rw-p 00000000 00:00
7££d60648000-7££d6064a000 r--p 00000000 00:00
7££d6064a000-7££d6064c000 r-xp 00000000 00:00

£ ££600000-£E££££££££601000 r-xp 00000000 00:00 O

3149003
0
0
0

.../gurka 77?7
.../gurka 777
.../gurka 777

[777]
.../1libc-2.23.s0 777

[?77]
[vvar]
[vdso]
[vsyscalll

Name: Persnr:

1.3 Arghhh! [2 points]

Assume that we have a program boba that writes “Don’t get in my way” to
stdout. What will the result be if we run the program below and why is this
the result? (the procedure dprintf () takes a file descriptor as argument)

int main() {

int fd = open("quotes.txt", O RDWR | O CREAT, S IRUSR | S IWUSR);
int pid = fork ();

if (pid — 0) {
dup2(fd, 1);
close (fd);
execl ("boba", "boba", NULL);
} else {
dprintf(fd, "Arghhh!");
close (fd);
}

return 0;

Name: Persnr:

1.4 list of free blocks [2 points]

If we when implementing malloc () and free() choose to save the free blocks
in a linked list that is ordered by their address, we will have a certain ad-
vantage. When we free a block we can insert it in the list and perform an
operation that reduces the external fragmentation. What can we do and why
is it an advantage to have the blocks order by address? Show with a drawing
what information is used and how the operation is performed.

Name: Persnr:

1.5 intern paging [2 points¥*]

When we implement memory internally for a process (for example in mal-
loc()) we us a form of segmentation. This is why we could have problem
with external fragmentation. If it’s better to use paging why do we not use
it when we implement internal memory management?

Name: Persnr:

1.6 context [2 points¥*]

By the help of the library procedure getcontext(), a process can save its
own so called context. We could build a library that allowed us to create new
executing threads and manually switch between these by calling a scheduler.

Why would we want to build such a library, are there any advantages? What
would the disadvantages be?

Name: Persnr:

2 Communication

2.1 count [2 points]

What will be printed if we execute the procedure hello () below concurrently
in two threads? Motivate your answer.

int loop = 10;

void xhello () {
0

int count = 0;

for(int i = 0; 1 < loop; i++) {
count—+-+;
}

printf ("the count is %d\n", count);

}

Name: Persnr:

2.2 pipes [2 points]

If we have two processes, one producer and one consumer, that are communi-
cating through a so called pipe. How can we then prevent that the producer
sends more information than the consumer is ready to receive and thereby
crash the system.

Name: Persnr:

2.3 name space [2 points¥]

Below is code were we open a socket and use the name space AF_INET. We
will then be able to address a server using a port number and IP-address.
There are other name spaces that we can use when working with sockets.
Name one and decribe its advantages and disadvantages it might have.

struct sockaddr in server;

server .sin family = AF INET;

server.sin_port = htons(SERVER PORT);
server.sin_addr.s_ addr = inet addr(SERVER IP);

10

Name: Persnr:

3 Scheduling

3.1 state diagram [2 points]
Here follows a state diagram for scheduling of processes. Enter the marked

states and transitions to describe what states means and when a process is
transferred between different states.

start

3.2 reaction time [2 points]

When we want to reduce the reaction time we want to preempt a job even
though the job is not completed. If we choose to do this we have one pa-
rameter to set, by changing this we can improve the reaction time. Which
parameter is it? How should it be set and what unwanted consequence might
it have?

11

Name: Persnr:

3.3 rate monotonic scheduling [2 points*|

A real time scheduler based on “Rate Monotonic Scheduling” (fixed priority
where priority is determined by periodicity). is a relative simple scheduler.
If we assume that deadlines are equal to the full peiodicity, how can we then
describe the load of a system?

Do we have any guarantees that the scheluling will work i.e. that no deadlines
are missed?

12

Name: Persnr:

4 Virtual memory

4.1 segmenting [2 points]

When we use segmentation to handle physical memory we could have pro-
blems with external fragmentation. This is avoided if we instead use paging.
How is it that we can avoid external fragmentation using paging? Is there
something that we risk?

13

Name: Persnr:

4.2 almost right [2 points]

Below is a extract from a program that implements Least Recently Used
(LRU). The code shows why LRU is expensive to implement and why one
probably instead choose to approximate this strategy. How could we approx-
imate the algorithm and which consequences would this bring? Could part

of the algorithm be implemented in hardware?

if (entry—>present — 1) {
if (entry—next != NULL) {

if (first == entry) {
first = entry—next;

} else {

entry—>prev—next — entry—>next;

}

entry—next—>prev — entry-—>prev;

entry —prev = last;
entry—next = NULL;

last —next = entry;
last = entry;

t
1 else {

14

Name: Persnr:

4.3 x86 64 addressing [2 points*]

In a x86-processor in 64-bit mode a PTE contains a 40-bit frame address.
This is combined with a 12 bit offset to a physical address. This is 52 bits
but a process only has a 48-bit virtual memory. What advantage is there to
have a 52-bit physical address.

15

Name: Persnr:

5 File systems and storage

5.1 list the content of a directory [2 points]

If we want to list the content of a directory we can use the library procedure
opendir (). Which information can we access directly form the structure
pointed to by entry in the code below? Describe three important properties.

Which information can we not find and where could this information be
found?

int main(int argc, char xargv||) {
char xpath = argv|[1];
DIR xdirp = opendir(path);
struct dirent xentry;
while ((entry = readdir(dirp)) != NULL) {

// what information do we have?

5.2 remove a file [2 points]

If we us the command rm we will not remove a file, rather remove a hard
link to a file. When is the file it self removed? How is this handled?

16

Name: Persnr:

5.3 log-based fs [2 points¥]

In a log based file system we write all changes to a continuous log without
doing any changes to existing blocks of a file. What is the advantage of
writing new modified copies of blocks rather than do the small changes we
want to do in the original blocks? If it is better, are there any disadvantages?

17

