
Trees

in Java

Algorithms and data structures ID1021

Johan Montelius

Spring 2025

Introduction

Linked lists might be useful but the true value of linked data structures
comes when we have more complex structures; the next step up from a linked
list is a tree structure. It’s called a tree since the structure originates in a
root that then divides into branches that are further divided into branches.
A branch that does not divide further is terminated by a leaf. Although the
structure is called a tree it is most often drawn with the root at the top and
branches going down, don’t get confused.

The trees that we will work on now are so called binary trees i.e. a branch
always divides into two branches, if it does not end in a leaf. The operations
that we will look at are: construction, adding and searching for an item.
We will later look at more general tree structures but the principles are the
same.

A binary tree

Let’s construct a binary tree where each node in the tree has: a value, a left
branch and a right branch. The values could be anything but to be able to
talk about sorted trees we require them to be comparable. In this example
we will simply use integers as values.

We use an nested class Node to describe the internal structure of the
tree. The tree it self only holds one property, the root of the tree. If the
root is a null pointer the tree is empty. A node with both left and right
branches set to null is a leaf in this representation; it makes life easier.

public class BinaryTree {

private class Node {

ID1021 KTH 1 / 4

private Integer value;

private Node left, right;

private Node(Integer value) {

this.value = value;

this.left = this.right = null;

}

}

private Node root;

public BinaryTree() {

root = null;

}

:

:

Now assume that that the tree is sorted so all nodes with values smaller
than the root key are found in the left branch and the nodes with larger
values in the right branch. The ordering is of course recursive so if we go
down the left branch we will find smaller values to the left etc.

Now implement two methods:

� void add(Integer value) : add a new node (leaf) to the tree that
holds the value. Note that the tree should still be sorted. If the value
exists, do nothing.

� bool lookup(Integer key) : return true or false depending on if the
value is found

When implementing add() one could chose to implement it recursively.
The algorithm would look like follows, start in the root node:

� If the value of the node is equal to the value, do nothing.

� If the value of the node is greater than the value and

– we have left branch - recursively add the key value to the left
branch and return,

– if not - create a new node and set it as the left branch and return.

� Same thing for right branch.

The lookup-procedure becomes very similar in its structure i.e. recursive
traversal of the tree in order to find the value that we are looking for. Set up
a benchmark and compare the execution time for a growing data set. Note

ID1021 KTH 2 / 4

that when you construct a binary tree you should not construct it using an
ordered sequence of values - what would happen if you did? How does the
lookup algorithm compares to the binary search algorithm that you used in
one of the previous assignments?

As an experiment, implement the add() operation but now without using
a recursive strategy i.e. keep track of where you are in the tree as you go
down a branch. Which approach is simpler to understand?

Depth first traversal

Very often you want to go through all items that you have in a tree and the
question then arise in what order you should traverse the tree. If the tree
like in our example is ordered with smaller values to the left, one natural
order would be to traverse the items starting with the leftmost and then
work your way towards the rightmost. This strategy is an example of a
depth first strategy i.e. you go down as deep as possible before considering
the alternatives.

The order could be called in-order since we present all items in the left
branch before presenting the item of the node itself. The item of the node
is thus in-between the items of the left and the right branch. We could also
present the items in a pre-order or post-order; the name describes where in
the order we place the item of the node.

A simple example of this can be shown by adding a print method to the
node class and print the values and values in in-order.

public void print() {

if(left != null)

left.print();

System.out.println(value);

if(right != null)

right.print();

}

An explicit stack

When we implement the print method we make use of the implicit stack of
the programming language. The programming stack was, as you probably
realized, quite nice to have since it saved us from keeping track of what to
do next. We could of course use an explicit stack and do the push and pop
operations ourselves; but as you will see this is quite tricky.

Use your dynamic stack implementation from one of the first assignments
and adapt it to be a stack of nodes (in C: pointers to nodes). We now define
an invariant that should always be true; an invariant is a property of a

ID1021 KTH 3 / 4

data structure or the property of the state of the computation at a particular
point in the code. The invariant will help us understand what needs to be
done in each step and goes as follows:

The left sub-tree of a node that is pop:ed from the stack has
been printed, the value of the node itself has not, nor the values
of the right sub-tree.

Before you start coding, take a white paper and make some drawings
of what the stack and the tree might look like. Now think think about a
scenario where you have pop:ed a reference to a node from the stack - what
should you do? Since the left branch has been handled you should print
the value of the node itself and then proceed down the right branch. Only
when the right branch had been handled should you pop the next node and
continue.

When you look at the right branch it could of course be that it is empty
(a null reference). Then your done, but if you have a node there you should
move down the left branch and push the nodes on the way down. When you
find the left-most node you’re in a position where the left branch had been
handled i.e. it is as if you just pop:ed the node from the stack.

public void print() {

Stack<Node> stk = new Stack<Node>();

Node cur = this.root;

// move to the leftmost node

while(cur != null) {

// print value of node

if(cur.right != null) {

// move to the leftmost node, push nodes as you go

} else {

// pop a node from the stack

}

}

// done

}

Implement the print procedure and test it to see that it works. You
might wonder if there is any reason to use an explicit stack instead of the
stack of the programming language but it turns out that it could come in
handy.In the print example there is no point in using an explicit stack but
we could have a scenario where we want to save a state that describes the
sequence of elements after a specific element; more on this on a lecture.

ID1021 KTH 4 / 4

