
T9

in Java

Algorithms and data structures ID1021

Johan Montelius

Spring 2026

Introduction

In this assignment you should implement the something that you might
have used when your were a kid and had your first mobile phone. At the
time when you had to text messages using a regular nine digit keypad, the
T9 system made life easier. If you typed ”43556” the text message would
probably say ”hello” and not ”idklo” or something else that was not a word.

T9 kept track of all words that could possibly be encoded starting in a
sequence of keys. If the user has typed ’3’ followed by ’2’ it knew that this
narrows the set of words down to words starting in ”ge”, ”he”, ”id” and ”if”
(assuming that there are no words starting in ”gd” nor ”gf” etc). T9 would
use this information to display choices for the user or, if there was only one
possible word, replace the sequence with a word. Sometimes the smartness
of T9 gave surprising text messages but over all it worked great.

The true implementation of T9 was very clever in how it encoded the
table of words in the dictionary and this was necessary since memory was
in short supply. The implementation that you should do will not be as
memory efficient but you will use the same structure as the original T9
implementation.

A strange tree - a trie

In this assignment you will not follow the T9 implementation exactly. To
start with you will use a list of the most common Swedish words and we will
then use only the characters ’a’ to ’ö’ but not ’q’ nor ’w’. This means that
we will have 27 characters which suits us fine since this is three characters
for each of the keys ’1’ through ’9’.

The main class of this assignment could be called T9. As we have seen
many examples of before it will be the public interface but hide all the

1



implementation details.

a node

To represent all the words in the list we will use a tree structure called a trie.
The idea is to construct a tree where each node has as many branches as
there are letters in the alphabet. The root of the tree thus has 27 branches
representing the words that start with: ’a’, ’b’, ’c’ etc.

A node will apart from the set of branches also have a boolean value
indicating of the path from the root to the node is a valid word. We will
call this a valid node although all nodes have a purpose, these are the ones
that represents valid words.

private class Node {

public Node[] next;

public boolean valid;

public Node() {

next = new Node[27];

valid = false;

}

}

A leaf in the tree will have the next value set to null and, as we will see,
always be a valid node. Note that the words themselves are never explicitly
represented as strings, it’s the path to a valid node (valid set to true) that
implicitly represents a word.

You might ask yourself why we use this strange tree to represent the
words but it turns out that it is a very compact form if done right. In this
Java implementation the set of 27 branches will take up some space but we
could have coded them as 27 bits i.e. four bytes. Searching for possible words
is also quite efficient even if we could find more efficient representations.

code, index and key

Some terminology and methods that could come in handy are: character,
code, key and index. A code is the integer representation of our charac-
ters. Implement a method that given character (’a’. . . ’ö’) returns the code:
0. . . 26. We will use these codes since they then can be used to address the
branches of an array i.e. the next array of a node. Also implement the
reverse method that given a code returns the character.

When implementing these methods, switch statement might come in
handy:

ID1021 KTH 2 / 5



private static int code(char w) {

switch (w) {

case 'a' :

return 0;

case 'b' :

return 1;

:

}

return -1;

}

The second thing we will need is a procedure that given a key returns
an index. The keys are the keys that you press: ’1’, ’2’ etc and the indices
are the integers 0 . . . 8. We will use indices starting with 0 since we will use
them to index an array.

The last thing we need, and this is not strictly needed but could be fun
to have, is a method that returns a key given a character. This could be
used to encode words so that you can turn ”toffel” into ”752224”. It will
come in handy when you do tests where you first insert a word and then
make sure that you can actually find the word given the encoded sequence.

So, to recap the terminology:

� character: the characters in our alphabet a...ö.

� code: the character code in the range 0...27.

� key: a character, the key that you press i.e. ’1’ , ’2’ etc.

� index: an int, the representation of keys in the range 0...8.

adding words

You will populate the tree by adding all words in a list. A word is added by
starting in the root and then work your way down the tree given the indices
of the characters in the word. If you find a branch empty you will of course
have to construct that branch. When you reach the last character you make
sure that the last node is marked as a valid node.

The add method is surprisingly simple and if you only draw up what
exactly is to be done you will write it down in ten lines of code.

searching for words given a sequence

The lookup procedure is slightly more tricky but only because we are looking
for all possible words and not just a single word. The following outline is
one idea but you could implement it as you like.

ID1021 KTH 3 / 5



Since this is an assignment in the end of the course I will make use of the
class ArrayList in the java.util library. This is simply the implementation
of the dynamic array that you did the first week so you could of course us
that.

To make things easier you should use a datastructure where you can
easily add words as we find them. A linked list is one simple solution so
start by implementing this to make things easier.

Implement a procedure decode, that takes a key sequence ("2314") and
returns a list of all possible words that could match the sequence. You can
implement this by creating an empty list and then add possible words as we
find them.

Starting in the root node you should collect all possible alternatives
given the key sequence. If the first key is ’2’ then this corresponds to the
initial letters ’d’, ’e’ or ’f’. You will find these branches if you look at
branches: 3, 4 and 5. Take the key ’2’, convert it to the index 1 and then
examine branches 1∗3, 1∗3+1 and 1∗3+2. You can examine the branches
by using the collect method recursively.

As an argument to collect you also provide a string and this is the
string representing the path that you have taken. Initially this string is set
to "" but as you go down the trie you add characters at the end of the string.
If you go down the second branch (1*3+1) then you add the character that
corresponds to the index 4 i.e. ’e’ to the string.

When you reach the end of the sequence you then have a string that
could be a valid word. Looking at the node that you have, the boolean
valid will tell you if this is indeed a valid word. If it is you simply add it
to the list of valid words. If all works well you should in the end have a list
containing all possible words.

Vanligaste orden i svenska

The word ”svenska” is among the two thousand most common words in
Swedish text. The word ”i” is in the top hundred. The words ”vanligaste”
and ”orden” are not among the most common but the words ”vanlig” and
”ord” are both in the top 500.

Given to you is a file containing the eight thousand most common words.
This will be your source to populate the T9 tree. The file is a version of
svenska ”Kelly-listan” [1] where we have removed multiple word expressions,
any words containing ’w’ (only ”webb-”, ”show” and ”clown”) or ’q’ (only
”squash”), and changed words like ”idé” to ”ide”.

To make sure that your T9 implementation work you can first populate
the tree, then for each word in the list encode it as a sequence of keys and
finally do a decoding of this sequence. You will of course have cases where
the encoded version of a word is decoded resulting in two or three words but

ID1021 KTH 4 / 5



most words are decoded back to the original.

References

[1] Kilgarriff, Adam; Charalabopoulou, Frieda; Gavrilidou, Maria; Johan-
nessen, Janne Bondi; Khalil, Saussan; Kokkinakis, Sofie Johansson;
Lew, Robert; Sharoff, Serge; Vadlapudi, Ravikiran & Volodina, Elena
Corpus-based vocabulary lists for language learners for nine languages
Language Resources and Evaluation,48:121–163 DOI 10.1007/s10579-
013-9251-2 2014

ID1021 KTH 5 / 5


