A Calculator
in C
Algorithms and data structures ID1021

Johan Montelius

Spring 2025

Introduction

In this assignment you should implement a calculator that can calculate
mathematical expressions described using reverse Polish notation. We do
this in order to see how a stack can be used. In all your programming courses
so far you have been working using a stack but you might not have used
one explicitly like we shall do now. You have probably never heard of the
reverse Polish notation but everything will be clear in a minute (or hour).

The HP-35 calculator and reverse Polish notation
and the stack

Reverse Polish notation is simply writing mathematical expressions with
the operand last. Instead of writing 5 + 3 we write 5 3 +. This sounds
weird but it has its advantages and the first programmable computer, Z3,
used reveres Polish notation when expressing mathematical formulas (start
googling now). If you took this class in 1972 rather than 2022 you would
probably be the proud owner of a HP-35 pocket calculator that also used
this form of entering expressions.

The good thing with reversed Polish notation is that you can do a away
with parenthesis. The expression (4 + 5) % 6 is simply written 4 5 + 6 .
The biggest advantage is that we have a very simple way of calculating the
result, all we need is a stack.

A stack is data structure that allows two basic operations: push and pop.
An item can be pushed on the stack and is then at top of the stack. A pop
operation will remove, and return, the item at the top of the stack, if the
stack is not empty. The item below the removed item is then at the top of
the stack. We can have other operations: check if the stack is empty, peek

ID1021 KTH 1/6



at a value some steps below the top of the stack etc but the two operations
that changes the state is push and pop.

It turns out that the reversed notation and the stack are made for each
other. If we have the expression 3 4 + then we simply push 3 on the stack,
push 4 on the stack and then do the addition by popping two items from
the stack and push the result back.

Take a pen and paper and go through the steps to calculate 34 + 2 4 +
if you end up with 42 on the stack you got the point.

The calculator itself is very simple in its design. It will keep a stack that
is used to store the numbers we enter and the results computed. It will read
input from the terminal and either push the values on the stack or pop the
required arguments, perform the calculation and push the result.

The tricky part is implementing the stack - don’t worry, you will have it
up and running in about an hour.

Implementing the stack

You will implement the stack in two versions, one static and one dynamic.

a static stack

The first implementation will be a fixed sized stack where the size is given
when the stack is created. The stack should allocate an array of this size
and keep track of a stack pointer (an index). For simplicity we implement a
stack that can only hold integers.

The two methods push and pop are fairly simple to implement and the
only thing you need to keep track of is the stack pointer and make sure that
you do not push items outside of the array.

Questions you need to consider:

e Does the pointer point to the location above the top of the stack or
does it point to the top of the stack?

e What is the value of the pointer when the stack is empty?

e What should you do when a program tries to push a value on a full
stack (stack overflow)?

e What should happen when someone pops an item from an empty
stack?

Some skeleton code to get you starting:

#include <stdlib.h>
#include <stdio.h>

ID1021 KTH 2 /6



typedef struct stack {
int top;
int size;
int *array;

} stack;

stack *new_stack(int size) {

int *array = (int*)malloc(size*sizeof(int));
stack *stk = (stack*)malloc(sizeof (stack));

return stk;

}
void push(stack *stk, int val) {
} :
int pop(stack *stk) {
X :
int main() {
stack *stk = new_stack(4);
push(stk, 32);
push(stk, 33);
push(stk, 34);
printf ("pop : %d\n", pop(stk));

printf("pop : %d\n", pop(stk));
printf ("pop : %d\n", pop(stk));

Note that we have to provide the size of the array when we create a stack
i.e. wee need to know beforehand how many items we might want to push.
Try to give a too small value and see what happens.

a dynamic stack

Slightly more complex is to handle a stack that can grow as we add more
items. In a push operation, that would generate a stack overflow using the
static stack, we simply extend the size of the stack by allocating a new

1D1021 KTH 3/6



larger array and copy the items from the original array to the new array.
One question is how much larger the new stack should be, should we increase
by only one item (no), a fixed amount (maybe) or something else?

void push(stack *stk, int val) {
if (stk->top == stk->size) {
int size =
stk->size =
int *copy
for (dnt 1 = 0; i < ...; i++) {
copyl[i] =
}
free(stk->array) ;
stk->array = copy;

Creating a larger stack should be only a few lines of code but how do you
do if you should also be able to shrink the stack? Assume that you extend
the stack from size 8 to 16 but then pop a few items, you then decrease the
size to 8 again. Yet you do not want extend to 16 and then immediately
decrease to 8 and then maybe immediately increase to 16. There should be
some mechanism in the system that only decreases the size of the stack after
a while.

You might want to keep a smallest possible size of your stack. There
might not be any point in having stacks smaller than for example four items.

an empty stack

There is always the question what should be done if someone tries to perform
an operation that can not be done; what should we do if we try to pop an
item from an empty stack? One solution is to be happy but return a value
that somehow signals that the stack is empty. This often zero, a negative
value or a null reference. If we choose this strategy it is of course important
that the user does not add these items to the stack since it would then be
impossible to determine if the stack is empty or it just happened to be a
value on the stack.

Another approach is to raise an error or exception. How this is done
is very language dependent; some languages like Java has good support for
this while other languages, like C, lack support. In this course we can take
the simple way out and either return a known value or simply crash.

ID1021 KTH 4/6



does it work

You experiment using the two versions of the stack in order to see that
things work.

int main() {
stack *stk = stack(4);

int n = 10;

for(int i = 0; i < n; i++) {
push(stk, i+30);

}

for(int i = 0; i < stk->top; i++) {
printf("stack[%d] : %d\n", i, stk->arrayl[i]);
}

int val = pop(stk);
while(val !'= 0) { // assuming O is returned when the stack is empty
printf("pop : %d\n", val);
val = pop(stk);
b
}

The Calculator

Once we have a stack we can implement a calculator. We will not implement
a fancy graphical interface, we will simply interact using the terminal. This
is some skeleton code that should get you started:
int main() {

stack *stk = stack();

printf ("HP-35 pocket calculator\n");

int n = 10;
char *buffer = malloc(n);

bool run = true;
while(run) {

printf(" > ");
fgetc(buffer, n, stdin);

1D1021 KTH 5/6



if (strcmp(buffer, "\n") == 0) {

3

}
}

run = false;

else if (strcmp(buffer, "+\n") == 0) {
int a = pop(stk);

int b = pop(stk);

push(stk, at+b);

else

else {
int val = atoi(buffer);
push(stk, val);

printf ("the result is: %d\n\n", pop(stk));

printf ("I love reversed polish notation, don't you?\n");

}

What is the result of:

4 2

3 x4+ 4 %+ 2 -

. so you know the answer, do you know the question?

1D1021

KTH

6/6



