
Linked lists

in C

Algorithms and data structures ID1021

Johan Montelius

Spring 2026

Introduction

So far you have only been working with primitive data structures and ar-
rays. More complicated structures are better described as structures that
are linked to each other using references, also called pointers or links. You
have probably used this method in a regular Java program where one object
could have a property that is referring to another object. The reference
is one-way so the object that has the property of course knows that it is
referring to another object but the other object is unaware.

As an example you can create a class that describes a person. The person
will of course have a name, an address etc but it could also have a father and
a mother. These properties could then be references to other objects rather
than strings with the name of the parents. A person could of course also
have an array of children where each child is a reference to another person
object.

In C we do not have any objects as in Java but we have something similar
to collect a number of values and this construct is called a struct. A struct
is a data structure that has a number of named elements. Each element
is a data structure that could be a primitive value, an array, a struct or a
pointer to another data structures.

In the following assignment we will create a simple data structure that
holds a value and a reference to another data structure. It’s the simplest
linked data structures that you can imagine, yet it will be very different
from the array structures that you have been working with so far.

a linked list

The simplest linked structures is a linked list. A linked list will hold a
sequence of cells but only have access to the first cell in the sequence. Each

ID1021 KTH 1 / 4



cell in the sequence will have some property but also have a reference to the
next cell in the sequence (sometimes called the tail). If this reference is a
null-pointer the cell is the last item in the list.

A simple linked list class that holds a sequence of integer could look like
follows:

typedef struct cell {

int value;

struct cell *tail;

} cell;

typedef struct linked {

cell *first;

} linked;

In C we most likely would like to have a procedure that allocates a linked
list on the heap and initialize the properties. Each new cell that is added
to the list will also be allocated on the heap so when it is time to deallocate
the structure wee need to return all cells.

linked *linked_create() {

linked *new = (linked*)malloc(sizeof(linked));

new->first = NULL;

return new;

}

void linked_free(linked *lnk) {

cell *nxt = lnk->first;

while (nxt != NULL) {

cell *tmp = nxt->tail;

free(nxt);

nxt = tmp;

}

free(lnk);

}

We can now add methods to for example add another integer to the
beginning of the list or finding the n’th integer in the list etc. Implement
the following methods:

� void linked add(linked *lnk, int item) : add the item as the
first cell in the list.

� int linked length(linked *lnk) : return the length of the list.

ID1021 KTH 2 / 4



� boolean linked find(linked *lnk, int item) : return true or false
depending on if the item can be found in the list.

� void linked remove(linked *lnk, int item) : remove the item if
it exists in the list (and also free the cell).

Remember that when you add a new integer you need to allocate a new
cell structure on the heap. If you have not started to think about what goes
on the stack and what goes on the heap it is now high time realize that C
is very different from Java.

void linked_add(linked *lnk, int item) {

cell *new = (cell*)malloc(sizeof(cell));

:

:

}

Another method that we can provide is to append a linked list to the
end of another linked-list. We do this by moving to the last element in the
linked list and making it point to the first element in the second list.

void linked_append(linked *a, linked *b) {

cell *nxt = a->first;

cell *prv = NULL;

while(nxt != NULL) {

prv = nxt;

nxt = nxt->tail;

}

if (prv != NULL)

:

else

:

:

}

When you have found the last cell in the first list you set its tail refer-
ence to the first cell of the second list. You should also (maybe, you decide)
set the second list to have an empty (null) reference as its first cell. We
might get very confused if a list of cells appear in two different lists but it’s
up to you.

benchmarks

Your first task is to set up a benchmark that gives us an idea of the running
time of the append operation. You should vary the size of the first linked

ID1021 KTH 3 / 4



list (a) and append it to a fixed size linked list (b). We’re not interested in
the exact run time but only how the run time changes with growing length
of list a i.e. the big-O complexity.

To generate a linked lists of length n, one could do something like this:

linked *linked_init(int n) {

linked *a = linked_create();

for (int i = 0; i < n; i++) {

linked_add(a, i);

}

return a;

}

You should then switch the benchmark around so that you have the
length of a fixed and increase the length of b. Explain your findings, why
does it look like it does?

compared to an array

So far you have been working with arrays that behave quite different from a
linked list. How would you implement the append function if you had used
arrays instead of a linked list? Explain in your own words what the imple-
mentation would look like and what this would mean for the benchmark.

a stack

In one of your previous assignments you implemented a dynamic stack that
would change size as you pushed and popped items. Now using your imple-
mentation of a linked list, how would you implement a stack data structure
with the regular push and pop operations? Use your own words and describe
the pros and cons.

Without doing any measurements, describe the expected difference in
execution time for the array implementation and the linked list implemen-
tation of a stack.

ID1021 KTH 4 / 4


