
Data structures in C

Algorithms and data structures ID1021

Johan Montelius

Fall term 2024

Introduction

This is a quick introduction to data structures in C. The syntax, control
flow, how to compile and how to run programs are things that I assume
basic knowledge in. This tutorial is about how data structures are used and
what you need to think about. I will assume that you know how to program
in Java and will thus point out the similarities and differences.

Primitive data type

As in any programming language we have a set of primitive data types in C.
In Java you have used for example: int, double, boolean and char. You
have very similar but even more primitive types in C. If you want to hold an
integer you can in Java choose from: byte, short, int or long depending
on how large integers you will use. All these types are signed types so a
byte can hold values from −128 to 127.

In C you can in a similar way choose from: char, short, int and long

but you also have the types: unsigned char, unsigned short etc. This
allows us to be more precise in our program and might allow the compiler
to produce more efficient code.

In Java you have probably also used the wrapper classes: Integer,
Double etc but since C is not an object oriented program we have noth-
ing equivalent.

call by value

C uses, as Java, a strategy called call-by-value when passing argument to a
procedure. This means that a value is copied (on the stack) and passed to
the procedure. The procedure can of course make use of this value but it
can not change the original value.

In the code below there is no discussion about what x is, it’s obvious a
variable of type int with the value 42. When we pass x to the procedure

ID1021 KTH 1 / 10

foo() we pass a copy of the value 42 to the procedure. The procedure can
change the value of the local variable a but this has no effect on the variable
x in main().

#include <stdlib.h>

#include <stdio.h>

void foo(int a) {

printf(" a = %d\n", a);

a = 37;

printf(" a = %d\n", a);

}

int main() {

int x = 42;

foo(x);

printf(" x = %d\n", x);

}

Sometimes we do want to change the original value and of course use
this all the time in Java. If we have created an object the variable holds a
reference to the object. When this value is copied and given to a method,
the code of the method has access to the object and can of course (if allowed)
change the values of the object attributes.

This is all done by default in Java and you probably have not thought
about it too much. In C however, you are in control over how we should
pass a value and you have to make up your mind.

pointers

This is the most complicated thing with C and you must understand what
you’re doing. In the code below we have a procedure bar() that takes a
pointer to an int (int *) as an argument. We call the procedure and pass
a pointer to x (&x) as an argument.

#include <stdlib.h>

#include <stdio.h>

void bar(int *a) {

printf(" *a = %d\n", *a);

*a = 37;

printf(" *a = %d\n", *a);

}

int main() {

ID1021 KTH 2 / 10

int x = 42;

bar(&x);

printf(" x = %d\n", x);

}

When we pass the pointer to a value we can change the value it self.
Note that you decide if the value or a pointer to the value should be passed
as an argument and the procedure is defined to accept either or. In Java this
is done without you noticing. If you declare a variable as an Integer and
pass it to a method, a reference to the object is passed. You will however
not be able to change the properties of the Integer object (I know how to
do this and I’ll show you) since this would be very confusing.

Structures

A compound data structure is called struct in C and consist of a set of
named elements. When you define a struct you will almost always also
declare a short hand name for it and this might look a bit confusing. The
reason is that we have two declarations that are written in one statement.

declarations

The first declaration is a typedef declaration that introduces a short-name
for a data structure. If we are going to use a color in our program and a color
is represented by an int (just as an example) we could have the following
declaration:

typdef int color;

We could then use the label color as a type in our program instead of
int. The advantage is that we later realize that we only need a char to
represent a color we can do this at one location.

A compound data structure is declared as follows:

struct rgb {

char red;

char green;

char blue:

}

This would declare a structure rgb with three components but every
time we would like to use it we would have to write struct rgb. To make
life a bit easier we could of course define a short-name for this with the
following declaration:

ID1021 KTH 3 / 10

typedef struct rgb color;

Another way to write this is doing it in one statement:

typedef struct rgb {

char red;

char green;

char blue:

} color;

What is a bit confusing is that you would most often use the same name
for the struct as the short-name so the declaration will probably look like
this:

typedef struct color {

char red;

char green;

char blue:

} color;

It looks like we are redundantly use the label twice and in one way we
are but I hope it is less confusing now when you know what we are doing.

call by value

Remember that C is (as Java) using call-by-value i.e. the value of an argu-
ment is copied and passed to the procedure we call. This happens even if
the value is a struct. In the examples below, determine the final value of
clr.red:

void foo(color c) {

c.red = 41;

}

int main() {

color clr = {31,32,33};

foo(clr);

printf("clr.red = %d\n", clr.red);

}

You can also, as with primitive values, return a struct from a procedure.
The structure copied back to the calling procedure and things behave as you
would expect.

ID1021 KTH 4 / 10

color bar() {

color clr = {51,52,53}

return clr;

}

int main() {

color clr = bar();

printf("clr.red = %d\n", clr.red);

}

In order to change the properties of the structure we need to pass a
pointer to the structure. This is very similar to how we work with primitive
values. Try the following:

void grk(color *c) {

c->red = 61;

}

int main() {

color clr = bar();

grk(&clr);

printf("clr.red = %d\n", clr.red);

}

Note how we access the properties of the structure (->) now that we are
given a pointer to the structure. What we here do explicitly is what is done
in Java implicitly when we pass an object as argument to a method.

The heap

To understand why we have a heap you need to understand the limitations
of the stack. The stack is a, as the name suggests, a memory area where we
add new data structures on the top; we can also remove data structures but
only from the top. When you call a procedure we add a stack frame on the
stack were the called procedure can allocate its local data structures that it
needs.

When the procedure returns, any data structure could be copied and
returned as a result. The structure needs to be copied since the stack frame
of the procedure will be removed from the stack and all its data structures
invalidated.

If a data structure should survive after we have returned from a proce-
dure, it can not be allocated on the stack. This is where the heap comes into
play.

ID1021 KTH 5 / 10

malloc and free

In C allocation on the heap is done explicitly using a call to the procedure
malloc(int size). The procedure will return a void pointer i.e. a pointer
to an area where the data structure is allocated. To show how this is done
we can continue with the color example. In the code below the procedure
zot() allocate space large enough to hold a color structure. Note how it cast
the return value from malloc() to become a pointer to a color structure.

color *zot() {

color *clr = (color*)malloc(sizeof(color));

clr->red = 71;

clr->green = 72;

clr->blue = 73;

return clr;

}

int main() {

color *clr = zot();

printf("clr->red = %d\n", clr.red);

free(clr);

}

In main() we call zot() to obtain the pointer to the color structure.
We print the value of the red field and then free the structure. The call to
free() will deallocate the memory area that was previous allocated. In this
small example it does not matter but in a real program you have to make
sure that data structures that are not longer needed are freed. If you just
allocate new structures without freeing the ones not needed you will run out
of memory.

Arrays

So now that you have learned how data structures are passed to and re-
turned from procedures you need to change this understanding since it is
not valid for array. For historical reasons arrays are not treated as regular
data structures - C will never copy an array when passing it as and argu-
ment to or returning it from a procedure. Let’s implement the equivalent
procedures but now using an array.

In the first example we called a procedure with a copy of the color
structure. The same thing using an array will not work as expected (if
you expect the array to be copied).

void foo(int c[]) {

c[0] = 41;

ID1021 KTH 6 / 10

}

int main() {

int clr[] = {31,32,33};

foo(clr)

printf("clr[0] = %d\n", clr[0]);

}

As you see a pointer is passed as the argument and the procedure foo()
will change the content of the array. The procedure foo() could be described
like this with exactly the same meaning:

void foo(int *c) {

c[0] = 41;

}

The second procedure, bar(), has no equivalent when using arrays. C
will not copy an array when it returns a value. You can try the following
but it will not even compile:

int []bar() {

int clr[] = {51,52,53};

return clr;

}

You could try the following but this will first of all generate a warning
and even if you ignore this it turns out that the compiler returns a null
pointer rather than returning a pointer to an array that is located on the
stack.

int *bar() {

int clr[] = {51,52,53};

return clr;

}

Passing a pointer instead of a copy as an argument is the way C works
so the grk() procedure will work as expected. The difference is that we
should not pass the address of the variable but the variable it self, exactly
as we did when we called foo().

The procedure zot() will also work exactly as the data structure version.
An array is allocated on the heap and a pointer to the array is returned.

int *zot() {

int clr[] = (int*)malloc(3*sizeof(int));

clr[0] = 71;

ID1021 KTH 7 / 10

clr[1] = 72;

clr[2] = 73;

return clr;

}

int main() {

int *clr = zot();

printf("clr[0] = %d\n", clr[0]);

free(clr);

}

I highly recommend that you copy the above procedures and try them
out. Remember: variables are normally passed as value (a copy) but not if
it’s an array, then it is passed as a pointer.

Memory management

Knowing how to work with the heap: how to allocate data structures and
when to deallocate them, is something you need to master when program-
ming in C. If you only have been programming in Java you might never have
thought about how data structures are allocated and probably never have
thought about when they are deallocated. Those days are gone but when
you master C and return to Java you will have a better understanding of
what takes place under the hood.

Your first problem is to determine if a data structure should be allocated
on the stack or on the heap. If it is an array where the size is only known at
run-time then you have no choice, it has to be allocated on the heap. If it’s
a structure with known size you have a choice and you need to determine
for how long time the structure should live.

The simple answer is that if a data structure should survive after the
return of the procedure then the structure must be allocated on the heap.
However, sometimes you have the choice of allocating a structure on the
stack and pass a reference to it instead of allocating a the structure on the
heap. The following program shows the two options:

color *zot() {

color *clr = (color*)malloc(sizeof(color));

clr->red = 71;

clr->green = 72;

clr->blue = 73;

return clr;

}

ID1021 KTH 8 / 10

void zit(color *clr) {

clr->red = 71;

clr->green = 72;

clr->blue = 73;

}

int main() {

color *ptr = zot();

printf("ptr->red = %d\n", prt->red);

free(ptr);

color clr;

zit(&clr);

printf("clr.red = %d\n", clr.red);

}

In this case it would be more efficient to allocate the structure on the
stack and pass a reference to it as an argument (i.e. zit(&clr)). This is
however a special case and it is more common that we use the first alternative
zot() since the number of structures to allocate and their life time is often
a run-time decisions.

always free but never twice and ...

Allocating things on the stack or heap is one decision that you need to
master. If the decision is to allocate on the heap you need to determine
when it is time to free the structure. When we free a structure we return it
to the underlying memory manager so that the memory could be used for
other purposes. If you forget to free a structure and the code is executed
over and over again then you will run out of memory after a while - this is
called a memory leak.

If you do a mistake and accidentally free a structure twice then anything
could happen. Your program will most likely crash with a segmentation
fault and will be very hard to understand why. The code that crashes the
system could be miles away from the place where you do the erroneous free
operation.

A similar problem occurs if you free a structure but forget that you
have and accesses the structure again. What will happen is not defined
and you might not even detect the error... until everything crashes with a
segmentation fault and you have no idea of where to start looking for the
error.

In the operating systems course you might have as an assignment to
implement malloc() and free(). Then you will understand why things
will break if you don’t do the right thing. Until then the rule is: free exactly
once and never touch a freed structure.

ID1021 KTH 9 / 10

Java

If you have programmed in Java you might wounder why C can not do the
same. Why do you have to decide if a structure should be on the stack or
on the heap why do you have to keep track of when a data structure is no
longer needed? The answer is efficiency; a program written i C is typically
two to three times faster than the same program written in Java. Sometimes
this is important and then C is the preferred language. Another answer is
more control of resources; in C you know how much memory your program
will use, in Java this is hidden. If you’re developing embedded systems you
might also have to interact directly with different memory areas, something
that is possible in C but this is not part of this course.

You might wounder how Java can determine if a data structure is not
any longer needed and the answer is that it can not. What it does is that
it periodically stop the execution and determine which data structures that
are still accessible from the execution state. These structures are copied
to a new memory are and the old memory are is reclaimed. This is called
garbage collection and is of course not inexpensive. Java is a program-
ming language where this is an accepted cost since the ease of programming
has priority. Doing the same in C would not be acceptable since you want
to be in control of the execution.

There are languages that fall in between Java and C. Rust is one example
that is on the same level as C but some restrictions in the language allows
the compiler to insert free operations exactly where they should be. Rust
then becomes a robust alternative to C, the efficiency is almost the same
but you do not have to think about memory management.

Even if the memory management is very explicit in C you do not have
any control over what happens inside malloc() and free(). In most cases
this is fine since the operations are very efficient and in most cases are
constant time operations. However, if you use a library you do not know if
and how much this library will use the heap. Most of the time this is not
an issue but sometimes you need to be in control all the way. This is were a
programming language like Zig comes into play. In Zig you will have more
control over how the memory allocation is done and a library routine can
not allocate memory without you knowing about it.

ID1021 KTH 10 / 10

