Hash tables

in Java

Algorithms and data structures ID1021

Johan Montelius

Spring 2026

Introduction

This assignment will show you the most natural way to organize a set of
entries that should be accessible given a key. We will start by using a not so
efficient solution, then move to something that is fast but does waste space
and hopefully land in something that is both space and time efficient.

A table of zip codes

To explore different techniques we will use a table of Swedish zip codes. The
original file is in a CSV format (comma separated value). We will read the
file and insert each item in a array of entries. Each entry consists of the zip
code, the name of the area and the population. The following skeleton code
will get you started reading the file and adding them all to an array (there
are 9675 entries in total).

import java.io.BufferedReader;
import java.io.FileReader;

public class Zip {

Area[] postnr;
int max = 10000;

public class Area {
}
public Zip(String file) {

ID1021 KTH 1/5



this. = new Area[this. 1;

try (BufferedReader br = new BufferedReader(new FileReader(file))) {
String line;

int i = 0;
while ((line = br. (0)) !'= null && i < this.max) {
String[] row = line. (,m;
postnr[i++] = new Area(row[0], row[1], Integer. (row([2]));
}
this. = 1ij;
} catch (Exception e) {
System. . (" file " + file + " not found");

Now write a lookup method that does a linear search through all zip
codes looking for a specific entry. Then, since the zip codes in the file are
ordered, you can write a binary search method that does the same. Write a
small benchmark that searches for 7111 15” and 7984 99” and explain the
results.

Since we know that all zip codes are numbers we might as well convert
them to Integers before creating the entries. Create a new version of your
zip program where you change the area data structure to hold an integer as
code and then populate the data as follows:

Integer code = Integer. (rowl[0]. ("\\s",""));
datal[i++] = new Node(code, row[1l], Integer. (row[2]));

Re-run all benchmarks and presents the results, has the execution time
improved?

Use key as index

Let’s do something different. If we have the zip code as the key and the key
is an integer, why not use that integer as an index in an array? We know
that the highest possible key is 99999 so why not construct an array that is
a hundred thousand elements large and then use the key as index, perfect
let’s go.

The only thing you need to change is to increase the size of the data
array, change how we populate the array and then implement a lookup()
method. Run the benchmarks and again and compare the time to do a
lookup to the binary search method.

ID1021 KTH 2/5



size matters

The only drawback with the implementation that you have now is that the
array is to 90% empty. You have an array of a hundred thousand elements
but there are less then ten thousand zip codes. This might not be a big
problem since we are only talking about some hundred thousand bytes but
in general this could of course be a huge drawback.

The solution is to somehow transform the original key into an index in a
smaller array. If we can find a function that takes a zip code key and returns
an index in the range 0 to let’s say 10000 then the problem would be solved.
The function could not be too time consuming since the whole point is to
save time so it should be very simple.

The function that transforms a key to an index is called a hash function.
One simple way of defining a hash function is to simply take the key modulo
some value m in hope that the indexes should be fairly unique. If we have two
keys that maps to the same index then we have collision that is something
that we need to handle (and will be able to handle) but the fewer collisions
the better.

Do an experiment where you read all the zip codes from the file and
then run through them creating an index modulo m for some values of m (
10000, 20000 ...). Your experiment should count the number of collisions of
each type i.e. two keys map to the same index, three keys map to the same
index etc. The following skeleton code should get you starting:

public void collisions(int mod) {
int mx = 20;

int[] data = new int[mod];
int[] cols = new int[mx];

// keys[] are the zip codes

for (int 1 = 0; i < max; i++) {
Integer index = keys[i]’mod;
data[index]++;

for(int i = 0; i < mod; i++) {
if (datali] < mx)
cols[datal[i]]++;

System. . (mod + ": ")
for (int i = 1; i < mx; i++) {

1D1021 KTH 3/5



System. . ("\t" + cols[i]);
}
System.out. O3

}

Do some runs with growing number of modulo operator. Apart from
testing values like 10000 and 20000 try something like 12345 or 17389, any
difference?

Finding a hash function is always a trade off between the size of the array
(the maximum index) and the number of collisions. The larger array that
is used the less collisions will you likely have but the more space is wasted.
A larger array does not necessarily mean that we will have less collisions.
Try the following three values: 13513, 13600 and 14000 - did the larger size
help?

handling collisions

When you have a hash function without too many collisions, it’s time to
learn how to handle these. One simple solution is to have an array of buckets,
each bucket holds a small set of elements that all have the same hash value.
The bucket can be implemented as a linked list of codes or a small array of
codes. The linked list might be easier to implement since you do not have to
care about adding too many codes to the bucket. In an array you do need
to handle the problem of allocating a slightly larger array when a collision
occurs.

All elements that are added with out a collision only induce an extra
reference (the indirection from the array to the bucket) and minimal memory
overhead.

Implement a version of you program that uses an array of buckets. The
array is of course initially empty and only when an entry is added do you
allocate the minimal bucket. The lookup procedure must of course check
that the element actually has the correct zip code or find the element with
the correct zip code if we have several in the bucket. Even if there is only
one element in the bucket can you trust the hash function that this is the
element that you’re looking for. You might do a lookup of zip code that
does not exist yet the hash function gives you an index that is the also the
index of a legal zip code.

slightly better?

A slightly more efficient (but take care) version of the bucket implementation
is to use the array itself without indirection to separate buckets. The trick
is to start with the hashed index and then move forward in the array to
find the right entry. The lookup procedure would stop as soon as it finds a
empty slot and the hope is that this should not take too long. This is true

ID1021 KTH 4/5



if the array is sufficiently large for example twice as large as needed. If the
array is too tight the risk is of course that hundred of elements needs to be
examined (and what will happen if the array is full?).

Implement the improved version and do some statistics on how many
element you need to look at before finding the one that you’re looking for.
Try with an increasing size of the array and compare the results with the
original solution.

1D1021 KTH 5/5



