Train shunting

Programming IT - Elixir Version

Christian Schulte

adapted to Elizir by Johan Montelius

Spring Term 2023

Introduction

You are in charge of shunting wagons of a train. In the following we assume
that each wagon is self driving and that the train has no explicit engine.

The description for your shunting task is given by two sequences of wag-
ons: the given train and the desired train. Your task is to rearrange the
given train with help of your shunting station such that the desired train
is obtained. You are not only supposed to rearrange the train but also to
compute a sequence of shunting moves (which are called just “moves” from
now on).

The shunting station is shown in Figure 1. It has a “main” track and
two shunting tracks “one” and “two”. A situation in the shunting station is
called state. A mowve describes how wagons move from one track to another.

one

main

two

Figure 1: Train shunting station

Goal Our ultimate goal in this lab is to find a short sequence of moves
that turn a train on the track “main” into another configuration of the train
on “main”.

ID1019 KTH 1/9



Before we attempt this goal we will fix the modeling of our problem and
develop some list processing support.

Lab purpose This lab exercises several important issues. How are prob-
lems modeled by data structures such as lists and tuples. How are lists
processed. This ranges from simple to more complicated patterns of recur-
sion over lists. This lab is of course also geared at getting you started with
Erlang and functional programming in general.

And last, but not least, we hope that you have some fun solving this
little puzzle.

Modeling

Trains, wagons, and states Wagons are modeled as atoms and trains on
tracks as lists of atoms. A train has no duplicate wagons (that is, [:a, :b]
is a train, whereas [:a, :a] is not).

A complete description of the state of a shunting station consists of three
lists: a list describing the train on track “main”, and two lists describing
tracks “one” and “two”.

[:c, :d]

[:a, :b]

[:e, :f]

Figure 2: Example state displayed.

right-most, left-most One important question is of course which wagons
are the right-most and left-most. We can of course choose how we represent
our tracks but will chose a way that follows how we write our tracks.

For track one and two the first element in the list will be the wagon closes
to the path to the main track. The first element in the list that represents
the main track is the left-most wagon on the track i.e. furthest from track
one and two.

The state {[:a,:b],[:c, :d],[:e, :f1} is visualized in Figure 2.

ID1019 KTH 2/9



Moves A move is a binary tuple. The first element of a move is either
:one or :two. The second element of a move is an integer. For example,
{:one, 2}, {:two,2}, and {:one,-3} are all moves.

Applying a move to a state Moves describe how one state is trans-
formed into another:

e If the move is {:one,n} and n is greater than zero, then the n right-
most wagons are moved from track “main” to track “one”.

If there are more than n wagons on track “:main”, the other wagons
remain.

e If the move is {:one,n} and n is less than zero, then the n left-most
wagons are moved from track “one” to track “main”.

If there are more than n wagons on track “one”, the other wagons
remain.

e The move {:one,0} has no effect.

The same holds true for moves with first element :two concerning track
“two”.

[:b,:c,:d]

[:d]

Figure 3: Moves applied to states.

Example Figure 3 shows examples of moves applied to states, where (a) is
the initial state, (b) after application of {:one, 1}, (c) after application of
{:two, 1}, and finally (d) after application of {:one,-2} (note the order).

1D1019 KTH 3/9



Some train processing

Before we actually start, we will develop some train-processing routines
that you will need later. When implementing these functions you should
implement them from scratch i.e. not use library modules such as Lists,
Enum etc. Why - because you will practice writing recursive functions.

1. take(train,n) returns the train containing the first n wagons of
train.

2. drop(train,n) returns the train train without its first n wagon.

3. append(train2,train2) returns the train that is the combinations of
the two trains.

For example,append([:a,:b],[:c]) returns [:a, :b, :c].
4. member (train,y) tests whether y is a wagon of train.

5. position(train,y) returns the first position (1 indexed) of y in the
train train. You can assume that y is a wagon in train.
For example, position([:a,:b,:c],:b) returns 2.

6. split(train, y) return a tuple with two trains, all the wagons before
y and all wagons after y (i.e. y is not part in either).

For example:

split([:a,:b,:c],:a) = {[],[:b,:cl}

split([:a,:b,:cl,:b) = {[:al,[:c]}

7. main(train, n) returns the tuple {k, remain, take} where remain
and take are the wagons of train and k are the numbers of wagons
remaining to have n wagons in the taken part.

For example:

main([:a, :b, :c, :d], 3) {0, [:al], [:b, :c, .dl}

main([:a, :b, :c, :d], 5) = {1, [0, [:a, :b, :c, .d4d]}

The last function requires some explanation; the wagons on the main
track are in reverse order i.e. the first wagon in the list is in the leftmost
position on the track. When you’re asked to move two wagons to another
track you should dive the train into two segments; the segment that should
remain and the two wagons (to the right i.e. in the end of the list) that
should be moved.

ID1019 KTH 4/9



You could of course implement this by first counting the number of
wagons on the track and then decide how many to take and drop, but why
not do this in one recursive function? Implement the function main/2 as one
recursive function without using the functions that you have used before. In
the report, describe how you have implemented the function.

Please put all definitions together in one module Train in a file train.ex

Applying moves

The first task is writing a binary function single/2 that takes a move and
an input state. It returns a new state computed from the state with the
move applied.

For example, single({:one,1},{[:a,:b]l, [1,[1}) returns{[:a],[:b], [1}.

single should be used later in this assignment whenever a move is to
be performed on a state.
Approach the task as follows:

e Your program should decide by pattern-matching which track is in-
volved and what the different elements of a state are.

e For a track, you have to decide whether wagons are moved on or from
the track (that is, is n positive or negative).

e Take into account that moves are allowed where no wagons are moved
at all!

e Use the main/2 function when moving wagons from the main track.

You should also implement a function sequence/2 that takes a list of
moves and a state an returns a list of states that that represents the transi-
tions when the moves are performed. For example,

sequence([{:one, 1}, {:two, 1}, {:one, -1}, {:two, -1}1, {[:a,:b],

should return the lists:

{[:a, :p1, 00, (13},
{[:a], [:v], (1},
{00, [:v], [:al},
{C:v1, 01, [:al},
{[:b, :al, [0, [0}

You can use this function to verify that the sequences of moves that you
generate actually do solve the problem given.
Please store your function in a module called Moves in the file moves. ex.

1D1019 KTH 5/9

1,

N



1 The shunting problem

So now for the actual problem, finding a sequence of moves that changes the
order of the wagons on the main track.

Develop a procedure find that takes two trains xs and ys as input and
returns a list of moves, such that the moves transform the state {xs, [1, [1}
into {ys, [1, [0}

In the following, we require that xs and ys contain the same elements
(wagons) and that each wagon is unique (in other words, xs and ys are
permutations of each other).

Approach the problem as follows. The problem is solved recursively and
each recursive step will move one wagon in the position as required by ys.

The base-case is simple. If there are no wagons, no moves are needed.

Otherwise, we take the left-most wagon y from ys (the desired train).
Our goal is to find a list of moves that takes the wagon y from its current
position in xs to being the left-most wagon in a train on the main track.
This is done by the following moves:

1. Split the train xs into the wagons hs and ts, where hs are the wagons
before y in xs, and ts are the wagons after y in xs.

2. Move verb+y+ and the following wagons (that is verb-+ts+) to
track “one”.

3. Move the remaining wagons (that is, hs) to track “two”.

4. Move all wagons on “one” to “main” (this includes y, which goes as
needed to the left-most position on “main”).

5. Move all wagons on “two” to “main”.

After having moved one wagon in the right position, we only need to
consider the remaining wagons of ys. We should of course update the current
state on the main track but the state is simply ts appended to hs (we moved
ts to the main track before hs).

Note that the function find/2 does not need to ”perform” the moves
using single/2 or sequence/2, we know what the final state should look
like. You can, or should, use sequence/2 to verify that £ind/2 actually
takes us from the initial state to the desired.

Please store your functions in the module Shunt (and file shunt.ex).

Example. Given the input train [:a, :b] and the output train [:b,:a],
the list of moves computed by find is:

[{:one,1},{:two,1},{:0ne,-1},{:two,-1%}
{:one,1},{:two,0},{:0ne,-1},{:two,03}]

1D1019 KTH 6/9



Finding less moves

As you probably noticed, a generated sequence of moves contains a lot of
redundant moves. Develop a function few that behaves as find but that
takes for each recursive application into account whether the next wagon is
already in the right position. If so, no moves are needed.

Proceed by modifying (only very few modifications are needed) your
program for £ind/2.

Please store few/2 also in the module Shunt.

Example. Given the input train [:c, :a, :b] and the output train [:c, :b,:
the list of moves computed by few is:

[{:one,1},{:two,1},{:0one,-1},{:two,-1}]

2 Move compression

The list of moves computed by few/2 is still awkward and can be easily
optimized according to the following rules:

—

. Replace {:one,n} directly followed by {:one,m} with {:one,n+m}.
2. Replace {:two,n} directly followed by {:two,m} with {:two,n+m}.
3. Remove {:one,0}.
4. Remove {:two,0%}.

These optimizations are correct in the sense that the shorter list of moves
will compute the same final state.
This task is actually tricky: think for example of

[{:two,-1},{:0ne,1},{:0ne,-1},{:two,13}]

Repeatedly applying the rules from above actually results in no moves at
all. By application of Rule 1 we obtain [{:two,-1},{:0one,0},{:two,1}];
by Rule 3 [{:two,-1},{:two,1}]; by Rule 2 [{:two,0}]; and finally by
Rule 4 [].

Develop a function compress/1 that takes a list of moves and returns a
compressed list of moves. Compression must be complete, that is, none of
the above rules should be applicable to the returned list of moves.

Approach this task as follows. Develop a procedure rules/1 that applies
rules recursively. Then repeat application of rules/1 until the list of moves
does not change. Thus, compress is implemented as follows:

ID1019 KTH 7/9



def compress(ms) do
ns = rules(ms)

if ns == ms do
ms
else
compress (ns)
end

end

Please store your program also in the module Shunt.

3 Finding really few moves

This assignment is voluntary. This means you don’t have to do it, however
we strongly encourage you to do it. And actually it is fun!

The problem with both find/2 and few/2 is that they always push back
the wagons from “one” and “two” to “main”, even though there might be
some opportunity to actively use track “two” to push wagons from track
“one” into position and vice versa. In the following, we are going to take
advantage of this.

Develop a procedure fewer, that takes four arguments: ms as the wagons
on “main”, os as the wagons on “one”, ts as the wagons on “two”, and ys
as the desired train.

fewer works recursively and as before, each recursive invocation will
bring the first wagon y of ys into the right position. What is new, is that
this wagon might be on either track:

e If y is a member of ms, bring it in the right position as done previously.
Leave the other wagons on track “one” and “two”.

e If y is a member of os (it is on track “one”), move the wagons in
front first to “main” and then to “two”. Then move y into position.
Otherwise, leave the wagons on “one” and “two” unchanged.

This adds one more wagon in the right position on “main”.
e Do the same for “two”.

Each recursive application of fewer has of course to supply the wagons
on all three tracks correctly!

Initially, fewer is applied such that the tracks “one” and “two” are the
empty list. For example,

fewer([:a,:p],[1,[],[:b, :al)
returns

[{:one,1},{:two,1},{:0ne,-1},{:two,0},{:0ne,0},{:two,-13}]

1D1019 KTH 8/9



4 Acknowledgments

The idea and the initial problem formulation is taken from an assignment at
the 8’th Prolog Programming Competition organized by Bart Demoen and
Phuong-Lan Nguyen.

1D1019 KTH 9/9



